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1. Pages 1-5 and 1-6, remove and substitute T-punched pages. Mark I Avionics

Key Characteristics becomes Fig. 1-3

2. Page 1-8, third paragraph, first line, change to read "Software requirements

were determined for development test, ..... "

3. Page 1-11, Table 1-1, delete "(OFICM)" and substitute "(COFIRM)"

4. Page 2.1-6, line 11, delete "Mark I" and substitute "Mark II"

5. Page 2.2-3, paragraph 2.2. 1, second line, delete "load" and substitute "level"

6. Page 2.2-7, second paragraph, lines 9 and 12, delete "manual" and substitute

"mechanical"

7. Page 2.2-11, fourth paragraph, delete "load relief" and substitute "load limiting"

8. Pages 2.2-11 and 2.2-12, remove and insert revised T-punched page

9. Page 2.2-13, change first two lines to read "Speed brake control is "fly-by-wire"

to the servoactuators, with mechanical linkage from actuators to brake surfaces.

Each actuator has series electrohydraulic valves, "

10. Page 2.2-15, second paragraph, lines 4 and 5, change to read "launch the orbiter

provides guidance to the composite orbiter-booster vehicle and, subsequent to

reentry below Mach 2 speeds, the spacecraft GN&C system provides"

11. Page 2.2-23, Table 2.2-2, Candidate CDC Alpha-1, Column 10, delete '"XDS

Signal 7" and substitute '"XDS Sigma 7"; Column 1, delete "Candidate IBM

4X CP" and substitute "rIBM 41 CP"; Candidate Univac 1832, Column 10,

delete "Solo Leader" and substitute "Solo Loader"

12. Page 2.2-25, Table 2.2-3, Parameter Star Magnitude last 3 columns, delete

dashes and add +1.0 (Bendix,), +2.0 (Litton), and +1. 8 (Kollsman)
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13. Pages 2.2-27 and 2.2-28, delete and insert revised T-punched pages

14. Page 2.2-39,; Fig. 2.2-18, first block, add "S-3A above "Audio Panel"

15. Page 2.2-57, second paragraph, line 3, delete "flight dock" and substitute
"flight deck"

16. Page 2.2-97, fifth paragraph, line 4, change to read

"data-gathering subsystem from the LMSC Space Experimental

Scientific Program (SESP); ..... "

17. Page 2.2-98, Table 2.2-34, delete "P-50" and substitute "SESP" in 5 places

18. Page 2.2-101, Fig. 2.2-51, Analog Mux S/S, delete "P-50" and substitute
"SESP"

19. Page 2.2-129, paragraph 2.2.3, second bullet listing, change to read
o Flexible (CRT/KEYSET) man interface and DMS highspeed,

digital access to all LRUs without resort to a complex data
bus offers straightforward economical methods of addressing
shuttle-unique and combined aircraft-spacecraft instrumentation/

checkout/control problems. "

20. Page C-3, Fig. C-2, after "Signal Acquisition Remotes" add "(SAR)"

21. Page C-6, Table C-2, delete " [your list] " after MADAR

22. Pages D-11, D-12, remove and insert revised T-punched pages



VOLUME I,,,EXECUTIVE SUMMARY

None.

VOLUME II, PART 1, 040A SYSTEM

1. Page 3--12, subsection 3.4.2, line 3: Change "(GE F100/F12A3)"
to read "(GE F101/F12A3)"

2. Page 3-13, caption for Fig. 3-9: Change "F101/AB" to read
"GE F101/F12A3"

3. Page 3-13, caption for Fig. 3-9: Change "F101/A3" to read
"GE F101/F12A3"

4. Page 3-14, caption for Fig. 3-10: Change "F101/A3," to read
"GE F101/F12A3"

5. Page 4-26, subsection 4. 1.4, paragraph 3: Change to read
"A structural modification kit is added to the orbiter payload bay to provide
for the installation of jet engines for the orbital mission. This kit, which
minimizes the scar weight, includes structuraL support for the pylons, doors
in the payload bay upper shell structure to permit pod deployment, and the
deployment mechanism which is shown in Fig. 4-16. The engine bay doors
are designed to return to the closed position with the pods deployed. For
ferry operation, a fixed dual engine pod may be substituted.

6. Page 4-27, caption for Fig. 4--14a: Change to read "Orbital Mission
Installations"

7. Page 4-28, caption for Fig. 4-15: Change to read "Orbital Mission Engine
Pod Arrangement"

8. Page 4-28, caption for Fig. 4-16: Delete "for Ferry Kit"
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VOLUME II, PART 2, ONE-AND-ONE-HALF STAGE SYSTEM

1. Pages 2-1, 2-2: Remove and substitute attached T-punched pages. A new

configuration replaces old Fig. 2-1

2. Page 3-5, line 1: Change "was sized" to read "was not sized"

VOLUME 11, PART 3, SRM BOOSTERS

1. Page 2-19, Fig. 2-9: Delete dashed line in upper lefthand graph

2. Page 3-6, Fig. 3-3: Change legends on all vertical axes to read

"Recurring Costs (106 $)1

3. Page 3-10, Table 3-2, next to last line: Change "3 Percent" to "4 Percent"

VOLUME III, COST ANALYSIS

I. Page 1-2, Fig. 1-1: Deletes callout "1113B" and arrow at extreme upper

right of graph
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FOR EW\ORD

This is the final report of a four-month extension of the Phase A Study of Alternate

Space Shuttle Concepts (NAS 8-26362) by the Lockheed Missiles & Space Company

(LMSC) for the National Aeronautics and Space Administration, George C. Marshall

Space Flight Center (MSFC). This study extension, which began on 1 July 1971,

was to study two-and-one-half stage, stage-and-one-half, and SRM interim booster

systems for the purpose of establishing feasibility, performance, costs, and schedules

for these system concepts.

The final report consists of three volumes (6 books) as follows:

Volume I - Executive Summary

Volume H - Concept Analysis and Definition

Part 1 - 040A System

Part 2 - One-and-One-Half Stage System

Part 3 - SRM Booster

Part 4 - Avionics

Volume III - Cost Analysis
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Section 1

SUMMARY

INTRODUCTION

The objectives of the Alternate Avionics System Study were to evaluate Avionics Systemn

alternatives and conceive an overall vehicle/ground system that (1) significantly reduces

total program cost and peak annual funding and (2) reduces the technological risk. Three

alternate systems were evaluated, and a baseline Avionics System which meets the study

objectives was selected. The major portion of this study report is devoted to this re-

commended baseline system; the alternates, which were evaluated but not selected, are

summarized in the appendixes.

The study scope included the avionics subsystems onboard the 040A Orbiter; the avionics

subsystems onboard the recoverable pressure-fed LOX/propane ballistic booster; the

electronics ground support equipment for direct support of flight avionics; and avionics-

related ground support for maintenance, launch, and mission operations. A 40 to 50

percent cost-growth allowance over the Mark I Orbiter avionics nonrecurring costs

was used as a constraint in defining the Mark II Orbiter Avionics System.

This study approach emphasized a requirement for a functional analysis to establish the

basis for a minimum, safe, flyable system. Alternate systems were defined for the

Mark I Orbiter after an initial estimate of major cost and risk factors. An extensive

compilation of developed avai&able equipment was prepared for use in mechanizing the

alternate systems. Each alternate was defined in detail, and on the basis of tradeoffs

of overall costs, risks, and system capability, the baseline system was selected. Also,

the projected Mark II Orbiter Avionics System configuration was considered in the

choice of the Mark I Avionics System baseline in order to simnplify the transition from

Mark I to Mark II.

Preceding page blank
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Development costs, technological risks, and schedule risks were minimized by

extensive selection of equipment already developed and/or demonstrated. Equipment

modifications were identified and costed as were qualification tests for those equip-

ment not environmentally protected and not previously qualified for the operational

environment. In a few cases, required equipment are presently being developed for

other applications in the 1972-1976 time period. Some equipment, such as thrust vector

control drive electronics or Attitude Control Propulsion. System (ACPS) drive elec-

tronics, must be designed and developed for the specific application but will use

proven techniques and hardware elements.

RECOMMENDED BASELINE SYSTEM

The recommended Mark I Orbiter Avionics System baseline concept is illustrated in

Figs. 1-1 and 1-2. All equipment required for safe return is dedicated and hardwired -

including displays and controls for crew information and control. The data manage-

mernt sub'stcm (DMS) plus the programmable displays and integrated control panels

are overlaid on the basic "safe system" to provide access to all subsystems and to

permit crew access to all information available to the data management computer.

Onboard checkout, fault-isolation, inflight performance monitoring, and redundancy

management are but some of the onboard capabilities provided by the DMS which

reduce dependence upon ground support. Manual override of the DMS and program-

mable displays is available to the crew in addition to hardwired dedicated equipment

controls which may operate independently of the DMS subsystem. The data manage-

ment computer, interfaces, programmable displays, and integrated control panels are

S-3A aircraft program-developed equipment that are presently being demonstrated as

an integrated system.

This baseline Avionics System. configuration provides flexibility for growth to an

expanded Mark II capability without a major change of system configuration. The

functions assigned to the DMS computer may be increased to include subsystem

operational computations with either backup or primary responsibility as desired.

Onboard mission planning, targeting, and on.board mission operations support will

increase vehicle autonomy and reduce operations cost, thereby reducing total program

cost.

1-4
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DATA MANAGEMENT SUBSYSTEM

SUBSYSTEM CONTROL FUNCTIONS

CREW SAFETY MISSION
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DISPLAYS AND CONTROLS

DO 2i 92

Fig. 1-1 Mark I Orbiter Avionics System Concept
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Fig. 1-2 Mark I Orbiter Avionics Baseline Recomrmendation
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Some of the key characteristics of the baseline Avionics System are presented in

Fig. 1-3. The Guidance, Navigation, and Control (GN&C) subsystem provides auto-

matic and manual operating modes with manual override of automatic functions. The

dedicated guidance/navigation computer is digital and is identical to one-half of the

dual computer (S-3A Univac 1832) used in the DMS. Spacecraft orientation and trans-

lation control is affected via this computer. The flight control system employs L-1011

aircraft-type dedicated analog computers for primary flight control and for autopilot/

autoland capability. Stability augmentation is provided, and fly-by-wire was selected

in preference to mechanical control cables.

The Controls and Displays (C&D) subsystem is configured to reduce crew workload

through display programming by providing data specific to mission phase only,

eliminating random caution and warning (C&W) annunciators, and having less random

instrument scan. Task allocations for horizontal flight test indicate the need for a

third crewman to monitor subsystems, aid in checkout, and provide expanded engineer-

ing flight data to the pilot and copilot- For vertical test flights and orbital operations,

a two-man crew can perform all defined manual tasks using the integrated control and

GUIDANCE AVIGATION ATTITUDE CONTROL DISPLAYS & CONTROLS

DEDICATED COMPUTER DUAL PILOT/COPILOT STATIONS
MANUAL OVERRIDE OF AUTOMATIC SAFETY OF FLIGHT: DEDICATED, HARDWIRED
AUTO/MANUAL TVC AND RCS CONTROL PROGRAMMED DISPLAYS
RCS ENTRY CONTROL TO MACH 2 REDUCED CREW, WORKLOAD
P.ASED ADDITION OF SENSOR SUIT INCREASED CREW CAPABILITY

REDUCED PANEL AREA REQUIREMENTS

FLIGHT CONTROL SYSTEM [LECTRICAL POWER

DEDICATED ANALOG COMPUTERS PRIMARY POWER
FLY-BY-WIRE MINI-TECHNOL 2000 HR FUEL CELL
STABILITY AUGMENTATION SYSTEM DEVELOPMENT
AUTOPiLOT/AUTOLAND AC GENERATOR SYSTEM
QUAD-LDOUNDANT AEROSURFACE SAFETY-OF-FLIGHT HARDWIRE INSTRUM

DRIVE/CONTROL AND CON IfROL
FLIGHT DATA DISPLAYS HARDWIRE SOME DMS CONTROL ACCESS

COMMUNICATIONS & TRACKING INSTRUMENTATION

APOLLO BLOCK II FOR SPACE FLIGHT CRITICAL HARDWIRED
S-3A TYPE FOR ATC VOICE. NON CRITICAL: DWS-CONTROLLED
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display configuration. As in horizontal flight test, the vehicle is flyable from either

seat and critical controls and displays are duplicated at pilot/copilot main instrument

panels. Backup minimum flight-instruction displays are not CRT dependent.

Electrical power generation, not strictly part of "avionics' but considered within the

scope of this study, presents the only area in which a new development is required.

The electrical power subsystem (EPS) configuration for the orbital mission includes

(1) three H2-O2 fuel cells, rated at 8 kW continuous power, which provide FO/FS 28

Vdc power for distribution to users; and (2) a centralized static 3-phase inverter

system, which provides 115 Vac power. Three 200/115 Vac generators, driven by

chemical-dynamic auxiliary power units (APUs), provide peak power for ascent phase

and atmospheric flight operation of the propulsion systems. These generators also

power transformer-rectifier (T-R) units for horizontal development flight tests.

Installation of the fuel cells and their cryogenic storage system is phased for the first

orbital development flight test. The fuel cell is a new low-cost development providing

a 2000-hr lifetime for Mark I that is increased to 5000 hr for Mark II. The cryogenic

tankage for AAP is used with development completion for Mark I and minimunm change

for Mark II. Power is distributed over a two bus system. It is hardwired to the crew

stations for manual control and override of automatic control of the EPS. Automatic

control is provided by sensors, circuit breakers, equipment controllers, and the DMS

which interfaces with the EPS through subsystem interface units (SIUs).

The Data Management Subsystem performs the major functions of checkout, fault isola-

tion, and redundancy management as follows. During prelaunch activities, orbiter

avionics is automatically checked out and fault isolated to the major replaceable unit

by the data management computer. Orbiter nonavionics and all booster systems are

checked out and fault isolatedl6 automatic GSE and manual inspection. Redundancy

management is manually initiated, except for time-critical items and unit internal

redundancy, which are automatic. Orbiter in-flight checkout and fault isolation for

safety of flight items is by dedicated built-in test with caution and warning annunciators

and operational displays. Orbiter avionics checkout and fault isolation is automatic;

nonavionic checkout and fault isolation is accomplished by a combination of operational

displays with semiautomnatic crew instructions. The checkout fault isolation and
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redundancy management functions of the DMS and vehicle systems are periodically

validated via MCC until programmatic confidence is established to support complete

autonomy. Redundancy management is the same as during prelaunch. For accomplish-

ing between flight maintenance on. vehicle systems, use is made of checkout, fault

isolation, and redundancy management prelaunch capability, supplemented by discrete

GSE units for periodic test and calibration plus special software routines in the data

management computer.

The recommended Mark I Orbiter Avionics System Baseline equipment block diagram

(See figure at end of this section) illustrates the major functional flow among subsystems

and equipment and identifies the program source for each equipment. The extensive

use of developed equipment from aircraft and spacecraft programs reduces technological

risk and reduces program costs.

Software requirements were determined from development test, for orbiter vehicle

functions, and for direct support functions. The development test software includes

programs for integrated test, equipment simulation, and test data reduction plus utility

programs, and requires 270K words. The orbiter vehicle software includes 34K words

for guidance navigation and control plus 232K words for data management. The latter

consists of 127K words for system test programs (OBCOFI) and 105K words for oper-

ational programs including common control and services (33K), system management

aids (27K), and subsystem operations support (45K). Direct support software includes

launch checkout, preflight data insertion, MCC system library, simulation, system

generation, and-data reduction for a total of 254K words. The baseline system soft-

ware requirement is thus 790K words.

Since the baseline equipment co6figuration employs the S-3A computer and data manage-

ment techniques, the software also would be based on S-3A developed software and would

use or would modify, to the extent appropriate, the already existing S-3A programs.

Of course, additional software development will be required.
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ALTERNATE AVIONICS SYSTEMS

Alternate avionics systems configured and evaluated but not selected are illustrated in

Figs. 1-4 and 1-5. System Alternate A provides separate aircraft ard spacecraft

subsystems which are dedicated and hardwired. Controls and displays for aircraft and

spacecraft functions are provided at completely separate stations. The lack of onboard

checkout and fault isolation capability means that extensive mission operations support

from ground facilities is required. System Alternate B combines aircraft and space-

craft dedicated and hardwired subsystems into one set, eliminating overlapping func-

tional equipment. Manual controls and displays are combined at pilot and copilot

stations. An onboard checkout and fault isolation system, incorporating a data bus

for equipment test access, provides status, caution, and warning information to the

crew. Dependence on mission operations support from the ground is reduced. System

Alternates A and B, when compared with the recommended baseline, are lower in

cost for onboard avionics, higher in total cost (flight avionics plus ground support),

have considerably less capability, ard do not hnave the flexi.bility for easy growth to

Mark II capability.

MARK II AVIONICS

The baseline Mark I Orbiter Avionics System configuration can be applied directly to the

Mark II Orbiter requirements, thereby minimizing changes and associated costs, and

providing flexibility of choice to the program insofar as the time of affecting a partial

or complete transition. Increased onboard capability, improved performance, and

improved equipment characterize the Mark II. Projected avionics changes to achieve

the Mark II system are listed in Table 1-1. Reduced turnaround time of two weeks

requires more extensive onboqard checkout and fault isolation capability. The addition

of area navigation with a real-time programmable CRT display will permit observation

of orbiter position relative to a computed track and will reduce crew workload for

repetitive types of navigational tasks. The horizon sensor and orbital altimeter may

be deleted if the Precision Ranging System (onboard M ark I for rendezvous) is applied

to orbital navigation.
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Table 1-1

MARK Ii AVIONICS CHANGES

Item Changes

Sub system s

Guidance, Navigation, Improve performance and quality of
and Control (GN&C) equipment; accuracy improvements

reduce ACPS, aV propellant use and
reduces reentry dispersions.

Control and Display Add area navigation/autoland CRT
display.

Communications & Tracking Improve performance and quality of
equipment.

Instrumentation Improve performance and quality of
equipment.

Electrical Power Provide 5000 hour life fuel cell.
Improve performance and quality of
equipment.

Data Management, Checkout, Increase onboard COFIRM for nearly
Fault Isolation & Redundancy complete autonomy for both avionics
Management (OFIC M) and non-avionics.

Software Performance of functional operations
through software instead of hardware
could significantly increase mission
flexibility and decrease change
reaction time.

Greater reliance on software in flight
controls and COFIRM will require
advanced management techniques.

Orbiter

Mark I Equipment Deletions Horizon sensor and orbit altimeter.

Tracking Satellite Used to augment navigation.

On-Board Navigation, Data Minimize dependence on ground
Management and CO'FIRM control and remote stations.
Improvements

Safety/Reliability Improved quality of equipment will
increase probability of mission
success and enhance safety.

More autonomous fault isolation and
redundancy manigement will reduce
crew workload and decrease correc-
tive action time.

1 -11
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)Other changes to the Mark II avionics subsystems are primarily for improvement of

performance and quality and the ability to withstand the space environments. These

improvements will reduce propellant loading requirements by providing greater

navigational accuracies and will reduce operational costs since fewer failures requiring

removal and replacement of equipment are expected.

BOOSTER AVIONICS

The interim recoverable pressure-fed ballistic LOX/propane booster avionics require-

ments were estimated on the basis of previous experience, since only sketchy informa-

)tion was available to describe the booster or its subsystems. Those functions that

could be performed by the orbiter without overly complicating the interface with the

booster were not mechanized in the booster to avoid duplication of equipment and

development costs. Thus, the guidance and control computations for composite vehicle

ascent are performed in the orbiter. An equipment block diagram. for the booster avionics

is presented in Fig. 1-6. For this booster, which is unmanned and is not guided or

actively controlled after staging, orbiter/booster avionics commonality is virtually

nonexistent.

COST

The baseline Mark I Orbiter Avionics System total cost for a phased program was

determined to be $323. 3 million with a maximum peak annual cost of $78 million. The

estimated total cost for Mark II is $202. 6 million, for a total program cost of

S525. 9 million.
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CONCLUSIONS

The recommended baseline Avionics System significantly reduces total program cost

and peak annual funding, and reduces technological risk. These principal study

objectives were achieved by extensive application of developed, proven equipment

from aircraft and spacecraft programs. Additional study is recommended to define

in more detail all subsystems of the baseline system. In particular, the application

of S-3A Avionics System techniques, equipment, and software plus modifications and

redesign of other equipment for compatibility with the S-3A checkout, fault isolation,

and inflight performance monitoring should be investigated. Interfaces among sub-

systems and equipment should be more precisely defined. Safety/reliabilitv studies

should be performed to verify adequacy of selected redundancy levels. A thorough

packaging and installation study must be performed to determine impact on the crew

station, on the environmental control system, and on access for maintenance. The

preparation of an avionics system management plan for design, development, test,

and integration is of primary importance.

1-14



vo rT F c-,

114 1 ,_. -- -n. 4 - -- .. ,

. , , -" I

IFLi '

S- I -/ I\I

Vi-

________" LA'. Ii

/2 '

ssA 8

'L SISA~a



Zi --------- --------- -

--~lr~~ V~i ---~------SI I~~i

I I~rw

SL - -- - SATURN

I3t r "--

4j
fdE~~F~B A, L

iD v P EA~TVC

41-~

IIIV

bDF1

U~vlC 103 2 K ____ j AN

42 ~33 Ll Ula IPL

(ri )~~ PCr 7~7 U 4$catieY
I' E)

KL

zj1 z_j e



f L - ------ - -- -----

6 ;8/t StU $ S

0L SUT L TAT C NORM___

.K EMORY.

------- -_-- --- - 10I

.B ..a',t ,- r. Ta E /

6 10 l-.,

---- " e - "- ---- - .I - 1 !
AL .MDAPO.

71 P V-7 I
Alo r L i0L

OU R 5 6 MBT S, R 5 OA

EV V

h!

17~lt~
2 ki-4-

~j~]77 I \ 7t



? FLIGHTf ATTITUDlE IMIATOR-S3
F~~~~~~ bA3 iRdI h M 2 Wfff .2

~4LAI I ANL~

.~27 AUTNLOT/ Q

9 £ l F 2T~W V " R -A' 13 / V ERfTI C AL G.- -- ED C 5

to ACv P3 1, h, E.t-5V

*~ 17 TALTITUDE~P' G~

141 ENG~INE 0F Vf~I PhV A ,L 2
22 ID1~f' I~2 TA CU G JO"

____I or!_ A .4 R T -~ Y N E t

I T .l A~ 1,1 l KEV!520 ~ CATI1 Afti r"21I,"3 T,'
21(001~pSIY MlV:Ii

22 fOMTR g.$Tf~lCWTIN fXD,
AC., Kf" .

11i 1I4.0'l //4)

-19, kl0 V,~ ~ ~ ~ FIL, r, ,1

29 , U~f -CIG"

ACAL K '"OE3 26 r0Mlw P V M NIti6,,A S
'D r U2

<728 Pi1 3-9 A- -CT ! 1j 1t
~*~FMP)



F3 Z3 43 /3G "'. fT C L -c 91
34 ' CDE SHECT P .L- NE

0 0 0 c: 4 Lf'HjF'J0 G Ar _

Q 0 j 0' 0 SY6

-c5A ~4~ 47 jN E )PLO-M
-0-0 0 4

42 X SUI N Y '11 G(1T"I l" iC72 I

5A R U:CT v E'1 %1ON 1DD1 ST-NEV1

467 47~J 4 1_

Y)ZI 7 SML4 GP7701 CO IMIJ'JZJ-

NEW K159 AH

60 1
AZI/A

~~~15



LMSC-A995931
Vol II, Pt 2

Section 2

SYSTEM CHARACTERISTICS

2.1 REQUIREMENTS AND GROUNDRULES

The requirements and groundrules for design of the Model LS 200-11 stage-and-one-

half system are nearly identical to those for the system using the Mark II 040A

Orbiter, except for configuration-peculiar requirements. The only exceptions to

applicable requirements reported in Part 1, Subsection 2.1 (for the Mark II 040A) are:

a. OMS propellants are to be H2/0 2 rather than storables.

b. OMS tankage is not to be limited to 1000 ft/sec capability if the delta-body
volume and tankage arrangement allows more.

c. The crossrange of 1100 cm is to apply w.ith 40, 000 lb payload and no ABES
aboard. (TPS is not to be increased to handle higher wing loading with
ABES on the resupply mission; rather, a less-severe trajectory with re-
duced crossrange is to be used.)

d. Avionics development is to follow the same sequence as is appropriate for
the Mark I - Mark II progression, rather than meeting Mark II capability
initially. Retrofit of Mark II type equipment in the operational vehicles is
to be implemented as it becomes available.

The reason for use of the H2 /0 2 system for the OMS is that this approach is most

cost-effective for stage-and-one-half. No major development is required, since the

RL-10 engine is used, and the relatively high on-orbit weight of a stage-and-one-half

orbiter would cause a significant penalty with use of less efficient propellants. Also,

the delta-body configuration al.ows for sufficient volume to store the less dense H2/02

propellants.

2.2 SYSTEM CONFIGURATION

Figure 2-1. depicts the launch configuration of the Model LS 200-11 vehicle. The system

has been designed by modification of Model LS 200-10 reported in detail in LMISC-A989142.

The driving purpose for modification has been cost reduction, and the net result of a
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Fig. 2-1 Launch Configuration of LS 200-11 Vehicle

number of changes has been weight increases as summarized in Subsection 1. 2.

(See Table 1-1.)

The decrease in costs is the net result of many fairly small reductions, no one of

which dominates. Of the ten changes which contribute most to cost reduction, five

incr,:.-.ase system weight, four decrease it, and the tenth causes no change in weight.

The f:llowing five changes result in system weight increases:

Al. Low -cost external tank design employing weld-bonding where feasible,
rather than fusion-welding, using a single bulkhead between the 02 and
II2 tanks, and replacing the titanium thrust cone with a maraging steel
design.

A2. Using an all-aluminum primary structure in the orbiter rather than
titanium in some areas.

A3. Eliminating titanium panels in the thermal protection system by using
insulation bonded to the primary structure throughout.

4. Using siorable propellants for the attitude control propulsion system and
the auxiliary power unit rather than H12/0 2 systems.

A.. Using acionics system designs employing available equipment.

2--2
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2.1 INTRODUCTION

2. 1. 1 Objectives and Scope

The objectives of this study were to evaluate avionics system alternatives and to

conceive an overall vehicle/ground system that significantly reduces total program

cost, peak annual funding, and technological risk.

The study scope was established by the primary study guidelines and the contractor

tasks as defined by the statement of work for Modification No. 10, Contract NAS8-26362.

The scope was modified and clarified by the NASA direction given to LMSC at the

midterm review on 7 October 1971. The resultant study scope is delineated below:

o The orbiter vehicle is the 040A, and both Mark I and Mark II orbiters are

to be considered. Orbiter nonavionics subsystems which interface with the

avionics system are therefore as identified for the 040A.

o The booster is the interim recoverable pressure-fed ballistic LOX/propane
booster. The extent to which avionics could be defined for this vehicle was
limited by the amount of vehicle and subsystem information available during
the time span of this study.

o The avionics system for the orbiter and booster includes the following where

required: (1) data processing; (2) displays and manual controls; (3) develop-
ment, test, and onboard software for the avionics system; (4) guidance,

navigation, and flight controls including actuators; (5) electronics ground

support equipment; (6) operational and development flight instrumentation;
(7) electrical power distribution, conditioning, and control; (8) signal and

electrical power wiring and shielding; (9) communications and navigational

aids; and (10) power generation.

o The supporting ground system includes avionics-related checkout/launch

operations support, mission operations support, and maintenance/refurbish-
ment support. Specifically excluded are facilities, facility equipment, and
facility personnel other than those required for the above support.

o Potential orbiter/space station interfaces are outside the scope of this study.

o As defined by NASA, the orbiter/payload interface is to consider a very
miunial payload health status information display capability in the orbiter,

minimum orbiter avionics for deployment and retrieval of payload, and

electrical power from orbiter for payload as follows: 3-kW average, 6 kW peak

nominalyl but 500 watts average and 800 watts peak during orbiter pe.ak loads.
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o The mission model and program schedule are as defined in NASA Technical

Directive 3004. The phased program expendable booster schedule is con-

sidered to apply to the interim recoverable pressure-fed ballistic booster.

o Rendezvous and manual docking are considered to satisfy the mission on-orbit

functional requirement for Mark I.

o In defining the Mark II avionics system, a 40 to 50 percent cost growth over

the Mark I avionics costs was allowable. (It was assumed that nonrecurring

cost was the basis for comparison.)

2.1.2 Approach

The basic study approach is depicted in the simplified flow diagram of Fig. 2.1-1.

The system functional requirements were identified for a representative Mark I mission

(100 nm polar) which included rendezvous and manual docking. The mission was

divided into phases, and the functional requirements for each on-board subsystem

were identified for each mission phase. In addition, the functions within each mission

phase were categorized as to their criticality for crew safety and for mission success.

Subsequently, types of equipment required to perform the various individual functions

MMARK I

COST AND AVIONICS COST

RISK ANALYSIS

MARK I

SYSTEM ONI E SELECT AVIONICS SYSTEM

FVF-

D05901

Fig. 2. 1-1 Alternate Avionics Systems Study Flow
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were identified, and those required to effect safe return of the crew were designated

versus functions and mission phases. This analysis provided the basis for a minimum-

redundancy fail-safe configuration of on-board equipment. The same technique was

used for horizontal flight functions, mission phases, and equipments.

In order to select meaningful alternate system configuration candidates (in addition

to the "separate aircraft/separate spacecraft functions" configuration described in the

statement of work) which would focus attention on major differences of on-board

functional capability versus required ground support, on major risk factors and on

major cost factors, the individual subsystem functions were examined to determine

which, in fact, might be performed off the vehicle. The result was that only functions

associated with checkout and fault isolation, data management, and position updating

were in this category. It also was recognized that on-board displays and manual

controls plus crew station arrangements have significant impact on overall system

effectiveness. Three alternate systems were considered adequate to span the study

problem and to highlight major choices available to the system designer. The tradeoff

of on-board capability versus the extent of ground support was estimated to encompass

the major risk and cost factors.

The first system, Alternate A, consisted of separate sets of aircraft and spacecraft

subsystems which are functionally dedicated and are hardwired. Separate aircraft and

spacecraft crew stations are provided. The vehicle system is heavily dependent on

mission support from the ground, since no on-board checkout and fault isolation system

is provided, and no data management system processes data to assist the crew in

decision making or in performing routine functions.

The second system, Alternate B, contains one set of functionally dedicated and hard-

wired subsystems. Displays ~td manual controls for aircraft and spacecraft are com-

bined at crew stations, and aircraft and spacecraft displays may be i: .r-mingled on

any one panel. A passive monitoring on-board checkout and fault iso. ion system

employing a data bus for test access to hardwired subsystems provides status, caution,

and warning indications to the crew. Safety-of-flight items are still ha.rdwired to panel.

annunciators. Dependence on ground support for launch is the same as for Alternate A,

•but dependence on mission support from the ground is reduced.

2.1-5
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The third system, Alternate C, retains the feature of functionally dedicated and

hardwired subsystem equipments required for safety of flight but significantly increases

on-board system capability by adding a data management computer with communication

links to each subsystem or major equipment and to programmable displays and integrated

control panels which are also added in this configuration. The crew has access to

information available to the data management computer and thus can more effectively

make on-board decisions and be relieved of performing routine tasks. The crew can

override the data management system, reverting to the dedicated hardwired subsystems

(and displays) for safety-of-flight functions. Improved on-board checkout and fault

isolation reduces the dependence on mission support from ground stations. This con--

figuration provides flexibility for growth to eventual Mark I capability. The points in

time at which increased capabilities (such as mission planning) are incorporated on-

board are options available to the Shuttle Program.

In order to configure the alternate systems by utilizing developed, proven equipments,

a significant effort was made to compile information on applicable equipment from

both aircraft and spacecraft programs. Programs researched included S-3A, L-1011,

C-5A, C-141, Jetstar, NASA/STOL, Agena, Apollo, AAP, and Gemini. The minimum

redundancy level for fail-safe, identified in the requirements analysis, was increased

on the basis of equipment reliability data, if available; if not available for specific

equipment, a judgment was made on the basis of similarity to known equipment or on

the basis of comparable complexity. This is recognized as an area requiring better

definition based on more complete data and extensive reliability analyses. For each

alternate system, equipment effectivity was identified for first horizontal flight, first

vertical flight manned (and unmanned), and for Mark II. Excluding displays and controls,

on-board checkout, and data management, the equipment for the three alternate systems

was not significantly different.

Costs were compiled for the three alternate systems and an estimate of reduced ground

support costs for Alternate B and Alternate C (versus Alternate A) was developed. The

Mark I baseline system was then selected on the basis of cost, capability, and flexibility

for growth to the Mark II configuration. Part C of this document is a brief Cost Summary

for the Baseline System. A more complete costing analysis is given in Volume III, Cost

Analysis.
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The delta impact of performing the first vertical flight unmanned was determined on

the basis that, manned or unmanned, the first vertical flight vehicle would have the

samle complement of Mark I avionics on board. The additional requirements unique to

the unmanned vehicle were identified and additional hardware, software, horizontal

flight tests, and support in the form of simulation, chase plane modification, and

training of ground controllers were estimated. Cost and programmatic impacts were

then identified.

The Mark II Orbiter avionics system projection was confined within a nonrecurring

cost growth allowance of 40 to 50 percent over the Mark I nonrecurring costs. Within

each subsystem area, desired improvements in performance and quality of equipment

were identified and cost estimates were prepared. Similarly, increased software

requirements corresponding primarily to an expanded role for the data management

system were estimated. A determination was then made that the desired additions

and improvements were within the allowable cost growth allowance. No general

allocation of funds was made for redesign of equipment to reduce weight and size or

for redesign to space environments.

The interim recoverable pressure-fed ballistic LOX/pi;opane booster avionics require-

ments were estimated on the basis of previous experience, since only sketchy informa-

tion was available to describe the booster or its subsystems. Those functions which

could be performed by the orbiter without overly complicating the orbiter interface

booster were not mechanized in the booster so that duplication of equipment and

development costs could be avoided.

2.1 -7
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2.2 MARK I AVIONICS SYSTEM BASELINE

The overall vehicle/ground system addressed in this study consists of orbiter avionics,

booster avionics, and avionics-related ground support for maintenance, for launch,

and for mission operations. The avionics system for the interim recoverable pressure-

fed ballistic LOX/propane booster is not a significant factor in determining the Mark I

orbiter avionics configuration, since orbiter/ ooster avionics commonality is minimal.

The booster avionics system is therefore treated separately (in Par. 2.6) of this

document.

The baseline system description in the following text includes orbiter subsystems,

electronics ground support equipment, and software for development, test, and

onboard functions. Ground support for maintenance, launch, and mission operations

is treated within the above framework.

The baseline system concept is illustrated in Figs. 2.2-1 and 2.2-2. Safety-of-flight

and mission essential functions are performed by dedicated, hardwired subsystems,

including displays and controls for crew participation and control.

A tremendous increase in onboard capability and a consequent reduction in dependence

on ground support is provided by incorporating a data management subsystem (DMS)

plus programmable displays and integrated control panels. The DMS accesses all

subsystems, provides the crew with information to assist decision-making, and

assists the crew by performing many routine functions. Manual override of the DMS

and programmable displays reverts the system to hardwired, dedicated equipment.

This configuration permits an evolutionary growth of onboard capability within the

Mark I time frame and the flexibility for growth to Mark II capability without a major

change of system configuration. Figure 2.3-3 illustrates the planned growth in

functional capability of the baseline Data Management subsystem.

2.2-1
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DATA MANAGEMENT SUBSYSTEM

SUBSYSTEM CONTROL FUNCTIONS

CREW SAFETY ESSNL

HARDWIRED PROGPAMMABLE

DISPLAYS AND CONTROLS

D152921(l)

Fig. 2.2-1 Mark I Orbiter Avionics System Concept
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Fig. 2.2-2 Mark I Orbiter Avionics Baseline Recommendation
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MARK I
FUNCTIONS HFT VFT OP'L MARK II

ONBOARD COFI AND DATA EXTRACTION o o o o

INSTRUMENTATION AND ELECTRICAL POWER
CONTROL o o o o

ABORT AIDS o o o a
GN&C COMPUTATIONS 0 o o

ONBOARD COIFIlRM o o o

SYSTEM MANAGEMENT AIDS o o o

AVIONICS CONFIGURATION CONTROL o 0

CONSUMABLES MANAGEMENT o 0

RENDEZVOUS COMPUTATION o 0

PAYLOAD MANAGEMENT 0

AIC AND S/C FLIGHT CONTROL o

NONAVIONICS CONFIGURATION CONTROL a

MISSION PLANNING a

DO6 14

Fig. 2.2-3 Data Management Functions Effectivity

2.2.1 Mark I Orbiter Avionics Subsystems

The functional requirements analysis (Appendix A) was basic to the definition

of equipment types for each subsystem and the minimum load of redundancy

was required for crew safety. An extensive search for aircraft and spacecraft

programs was made to compile information on developed, available equipment

of the types identified in the functional analysis. Appendix D summarizes the

baseline system equipment and some of its pertinent characteristics. Figure

2. 2-4 highlights some of the key characteristics of the Mark I Orbiter

avionics subsystems. "
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Fig. 2. 2-4 Baseline Mark I Avionics Key Characteristics

2.2.1.1 Mark I Orbiter Guidance, Navigation, and Control (GN&C). The Mark I

orbiter GN&C consists of a spacecraft section for operation during phases from

launch-through-reentry and atmospheric flight to Mliach 2 and in an aircraft section

for orbiter operations at velocities below Mach 2. In selecting the baseline

configuration., two previously established key program objectives were major

drivers - minimization of: (1) technology risk, and (2) program.cost and peak

funding. These Mark I requirements can be best implemented by selecting

equipment and software that are now in production or that will be amply

flight-proven by mid 1973, i.e., in time for use on the orbiter vehicle. Figure 2.2-5

summarizes methods for meeting these cost and risk objectives.

2.2-4

I ,rI"HnL MIliC. FES E, SPACE COMPANY



LMSC-A995931
Vol II, Pt 4

MINIMIZE TECHNOLOGY RISK

o ALL MAJOR COMPONENTS ARE (OR WILL BE BY 1973) WELL DEMONSTRATED,
IN PRODUCTION HARDWARE.

o NEW COMPONENTS (INTERFACE EQUIPMENT) WILL USE EXISTING CIRCUITS
.AND EQUIPMENT FROM CURRENT PROGRAMS SUCH AS APOLLO AND AGENA

o SOFTWARE TECHNIQUES, GENERATION, AND VALIDATION WILL USE TECHNOLOGY
DEVELOPED AND FLOWN ON AGENA G&N AND OTHER PROGRAMS

MINIMIZE COST

o NEW DEVELOPMENT MINIMIZED

3 CHANGES TO EXISTING EQUIPMENT ONLY WHEN ABSOLUTELY MANDATORY

Q SELECTION OF COMPARABLE EQUIPMENT BASED ON DEMONSTRATED LOW COST

o USE OF MULTIPURPOSE EQUIPMENT TO REDUCE QUANTITY, MAINTAINING
REDUNDANCY

0 PEAK FUNDING REDUCED BY DELAYING NEW DEVELOPMENT

D0547Ci)

Fig. 2. 2-5 Meeting GN&C Objectives

Exceptions to GN&C technical requirements* evolved where conflicts appeared with

cost and technical risk requirements and where NASA specifically requested technical

deviation. Specific deviations affecting the configuration are:**

o Mark II System and Orbiter. No specific redundancy requirement.

Contractor to determine and recommend desired level.

o Mark I System and Orbiter. Polar orbit payload (25K lb desired; 10K mil).

Turnaround time relaxed to one month.

o Booster. Reusable LOX/RP F-3 booster. (This requirement subsequently

deleted at mid-tern review and changed to ballistic interim water

recoverable booster. )***

* Ref NASA MSC-04075, Rev. B, "Functional and Performance Requirements
Specification, Space Shuttle Avionics, Orbiter", dated 10 May 1971

** Ref. Techmical Directive No. 3003

*** Mid-term Review, 7 October 1971, Rye Canyon, Calif.

2.2-5 .



LMSC-A995931
Vol II, Pt 4

Additionally, the automatic docking requircWmc.nts were deleted at mid-term review,
and LMSC was notified that the reference to ;pace stations no longer applied. Key
teclmical requirements for configuration dcfinrition and methods of implementation

are shown in Fig. 2. 2-6.

Under the minimum cost and technology risk iground rule, the first horizontal test
flight vehicle (FTV-1)**** will use only aircraft type GN&C equipment. Space flight
type GN&C equipment initially will be installd iii the first vertical flight test

vehicle (FTV-2); the full set of equipment will be installed in the first operational

(Mark I) vehicle.

Figure 2. 2-7 is an overview of the program chhedule for the Mark I and Mark II

vehicles.. Additional details of required spcciic equipment and levels of redundancy

for test and operational vehicles are discussed in the following sections.

**** Scheduled flight July 1976

REQUIREME NT 
i  L h

E
N TAT 

ION

o LANDING AND HANDLING TO REQUIRE NO USE OF SIDE STICK CONTROLLERS, AIRCRAFT TYPE
MORE SKILLS THAN OPERATIONAL LAND- PEDALS, SIAIIII.IIY AUGMENTATION, CONTROL
BASED AIRCRAFT LAW MIANAGEMI NT, APPROACH AND LANDING

AIDS AND II IUI(:ATORS

o AUTONOMOUS NAVIGATION CAPABILITY USE OF STAR TRACKIR, HORIZON SEN'SOR AND RADAR
ALTIMETER IC

lIi fI)AlE I0~U. PRECISION RANGING
SYSTEM lUSFU A' RIACUP. COMPUTERIZED TRAJECTORY
DETERMII4AIION AND STEERING

o AUTOMATIC AND MANUAL ORBIT VEHICLE HAND CONTROLIIRS f OR TRANSLATION AND STABILIZA-
STABILIZATION, CONTROL, AND TION INTIERFAC I DIR!CTLY TO ACPS LOGIC AND
TRANSLATION ELECTRONICS. OVLRRIDES AUTOPILOT ACPS CONTROL

WHEN USED

o GUIDANCE AND STEERING TO SHAPE UPDATE PRIOR I DtORS~IT, CLOSED LOOP CONTROL
TRAJECTORY TO ENTRY VEHICLE FROM INERIIAL (;t Ti'ANCE DURING REENTRY, VERTICAL
HEATING CONSTRAINTS, PRESCRIBED G CHANNEL UPIDAI POST BLACKOUT
LIMITS AND TERMINAL FOOTPRINTS

o AUTOMATIC GUIDANCE AND NAV TACAN, RADAR ATIlMETER, AUTOPILOT, AIR
CAPABILITY PRIOR TO FINAL APPROACH DATA, AUTOIIIROm fLE, INERTIAL NAV BACKUP

o APPROACH AND LANDING NAVIGATION SCANNING tRIAM ItS, (MICROWAVE)
THROUGH GROUND AIDS OR BY INERTI.L IMU AND R.ADAR ALTIMETER BACKUP
UPDATING

o AUTOMATIC-CONTROLLED INSTRUMENT DUAL DUAL L-1I I ALTOPILOT, AIR DATA,
LANDING WITH PILOT-CONTROLLED AUTOIHROT1TL, AUIIOSPEED-BRAKE CONTROL,
INSTRUMENT LANDING AND PILOT- MICROWAVE IL
CONTROLLED VISUAL LANDING AS BACKUP

D05765 0

Fig. 2.2-6 Orbiter Spacecraft GN&C Key ietit'iements Implementation
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2. 2.1.1.1 Aircraft Flight Controls. The baseline Mark I orbiter flight control

system consists of dedicated analog sensors, computers, servo-actuators, command

displays, and includes provisions for interfacing with the data management computer.

.This computer is programmed to assess system status, provide BITE stimuli, and

collect and process data for the integrated cockpit CRT displays. Flight control

equipment is hardwired, redundant, and operationally independent of the data

management computer. The flight control system functions encompass provisions

for: manual aero-surface control using side arm controllers and rudder pedals;

automatic stability augmentation; automatic surface trim throughout reentry (to
aid the ACPS); manual control of speed brakes and airbreathing engine throttles;

and autopilot operations for all atmospheric operations from Mach 2 through
automatic landing.

Primary Flight Control System (PFCS). Manual aero-surface control and
stability augmentation features have been integrated into a common hardware
computer grouping. This baseline subsystem is depicted schematically in
Fig. 2. 2--8. The Primary Flight Control System (PFCS) utilizes pitch, roll,
and yaw rates; lateral and normal accelerations; side-arm controller positions;
and rudder pedal position signals obtained from sensors located in an environmentally-
protected avionics rack area and pilot and copilot manual input controllers. These
signals are used to control dual tandem servoactuators serving as inputs to the
surface power unit manual control valve manifold. The servoactuator inputs
are mechanically added in series with automatic trim actuator inputs to
control the surface actuators. The servo loop is closed by a mechanical

feedback arm to the manual control valve.

The PFCS is engaged in each of the three axes for operation by depressing a
control panel switch; this panel also provides logic and switching to engage the
emergency controls in the event of catastrophic multiple PFCS failures.

Disengagement of the PFCS is accomplished by either manual or automatic

means, and indicated on the cockpit annunicator display panel.

2.2-7
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Fig. 2n 2-7 GN&C Mark I/Mark II Phase-In
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System mechanization is aimed at fail operational/fail operational/fail-safe operation.

For a combination of any two system malfunctions, the system will operate at

original gain and authority. Subsequent malfunctions result in unsatisfactory,

degraded system performance. Malfunctions result in the system being

automatically configured for access by the data management computer during flight

time-noncritical portions for isolation of improperly operating channels. During

time-critical flight phases, detection of catastrophic PFCS failures automatically

places the system in emergency control on the affected axis, provided that the pilot

has armed the system on the PFCS control panel.

A single PFCS failure is indicated to the data management computer but does

not activate panel warning lights in the cockpit; system status can be addressed

by the pilot during any phase of the mission. A second parallel axis fault is

indicated by illumination of an indicator strip on the annunciator panel in the

cockpit and is addressed to the data management computer. This light notifies

the pilot that subsequent faults in the affected axis of control will degrade performance,

pllowing him to arm system logic for automatically switching to the emergency

control mode. Alternatively, the pilot may address the data management computer

and perform end-to-end tests to determine remaining system capabilities.

PFCS redundancy management logic is disseminated in the PFCS computers,

thus preventing any single fault in the logic or prime power sources from

inhibiting the redundancy management function. System checkout is accomplished

by the data management computer supplying the necessary stimuli and

determining the degree of system readiness. PFCS hardware also is amenable

to other design and operational alternatives; however, the present discussion is

only concerned with the baseline approach. Hardware selected is basically

off-the-shelf L-1011 equipment which is modified in logic and control law

implementation for the space shuttle application.
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The hardware consists of the following major off-the-shelf components (excluding wiring

and installation provisions):

o P/N 672300-1-1, Rate Gyro (Pitch, Roll, Yaw), Four/Axis. Pertinent

characteristics include:

Range - : 20 deg/see

Threshold - 0. 01 deg/sec

Natural Frequency - 20 Hz undamped

Output - Phase Reversing 400 Hz ac voltage

o P/N 672301-101, Lateral Accelerometer, (4). Pertinent characteristics

include:

Range - + 2 g

Resolution - 0.0002 g

Break Frequency - First Order - 20 Hz

o P/N 672302-101 Normal Accelerometer, (4). Pertinent characteristics

are identical to lateral accelerometer

o P/N 672293-101, Computer Unit, (Six: 4 elevon, 2 rudder); Pertinent

characteristics include:

Independent computation channels - two/unit

Majority voting - quadruplex voting

Two or three layer printed circuit boards

Multi-layer side plane board

Fault isolation monitor annunicators on computer front panel

GSE test connectors on front of unit

Isolated channel wiring within the unit

Growth provisions on each card

o AYN-5, Central Air Data Computer, (2). Pertinent characteristics

include:

Altitude Accuracy - - (12. 5 ft + 1 ft/1000 ft.) to 50, 000 ft

Altitude rate accuracy - ± 4% to + 4, 000 ft/min.

IAS - ± 5 knots to 500 knots

Built-in interface with data management computer.

2.2-10
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o P/N (97660, PFCS Servo, (Ten: 8 elevon, 2 rudder). Pertinent

characteristics include:

Dualo Independent Servo Loops

Dual Independent Hydraulic Systems

Break Frequency - As Desired

MNximum Rate - As Desired

o P/N L16-81-1, Trim Actuator, (Ten: 8 elevon, 2 rudder). Pertinent

characteristics include:

Linear Screw Jack Actuator

Lightweight

28 VDC Motor

The PFCS provides three-axis stability augmentation functions including rate damping

and turn coordination. Although the "SAS Off vehicle flying qualities at present are

incompletely defined and the control laws are in preliminary development stages,

enough analysis has been done on the basic (Alternate Concept) study to establish that

SAS is required in at least the lateral axis.

The PFCS pilot control loop for elevons and rudder control employ inputs from central
air data computers to schedule gain changes and provide load limiting during the

high Mach numbler aerodynamic portions of flight.

Emergency Flight Controls. Emergency means of flying the vehicle after catastrophic

failures within the PFCS are provided in the orbiter aircraft flight control system. The

concept for the system is simple.and highly reliable. It consists of powering trim

actuators off hl olated battery bitsses through the standard trim switches on the side

arm controller for pitch and roll, and rudder trim pot on the PFCS control panel.

During norma operating conditions the trim actuator driving voltage is modulated,

according to flight conditions, to schedule trim rates. When the emergency controls

are activated by the pilot, this modulator is removed from the circuit and the pilot

"flies trim" with the actuators providing maximum trim rates.

The emerge:y controls can be activated on an axis-by-axis basis by pilot selection on

thze PFCS control panel. Alternatively, the PFCS system can be armed by the pilot at
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any time throughout the flight and the emergency controls will be automatically engaged

and annunciated to the pilot upon PFCS failure. Rigorous simulation/evaluation of pilot

and trim control compatibility must be conducted before system performance capability

is verified. Most jet power aircraft today are floNn primarily by means of the trim

systems. The XV-4B aircraft also was flown in simulation primarily using the "beep"

trim system. This is the simplest approach to emergency controls.

§peed Brake and Airbreathing Engine Throttle Control. For powered approach and

landing the orbiter speed control system, in conjunction with the GN&C computer,

determines the characteristics of the descent trajectory required to achieve a low

approach path angle. Speed is controlled through automatic adjustment of the engine

throttle. For unpowered flight, velocity reduction must be made before initiation of

final glide, soon after the "engine thrust not available" decision point. For this condi-

tion, the speed control system automatically operates the speed brakes to control

rate of orbiter energy dissipation so that the correct residual energy remains for

heading alignment turn, flare, final glide and touchdown. Both the engine throttles

and the speed brakes can be operated manually by the crew. The block diagram of

the speed brake and engine control system is shown in Fig. 2.2-9.

[GN&C ' -rLEFT
COMPUTER I LEFT

L...- _J -POWER --_-1 SPEED

SAS, L-1011 SERVO L BRK

IDATA DATA (2 ,LCW 
ISENSOR I  ICOMPUTER I SPEED LEFT

L CONTROL - SLEFD
COMPUTESPEED BRAKE

L-Ol 1 (1) L - _
LONG- jp Ir- UF7
ITUDINAL_ I RIGHT
ACCELER- POWER SPEED I
OMETER SERVO BRAKELBRSA D ..I

II ASSYETRY (2) LOWER
C-5A COiTROL - RIGHT

(1) SPBRAKEED

POSITION 
-BRAKE

(1 SET OF 4) AH56

CONTROLLER - CONTROL BREATHING
SPEED PKES ENGINES

(4) J

Fig. 2.2-9 Orbiter Aircraft Automatic Speed Control
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cable runs from each handle to the upper pair speed brake servos and lower pair of

speed brake servos, respectively. Each actuator has series electrohydraulic valves,

controlled by a simple asymmetry system patterned after an aircraft spoiler or flap

system. However, instead of shutting down the system when asymmetry is detected,

the error signal is used to equalize panel deflections. A mechanization of this type

allows control functioning in the presence of a fault in the system, which is highly

desired for a system upon which the crew depends so heavily during reentry. The

electrohydraulic valve inputs afford easy access to speed brake control for automatic

approaches made dead-stick. The series input, therefore, is used by the speed control

computer during automatic approach and landing for automatic energy management.

The speed brake controls interface with the data management computer to provide

status information on system health. The interface is also used to isolate failures to

the replaceable unit.

Each engine fuel controller is displaced by a separate rotary servo actuator actuated

electrically froiii. anli iindUepehdenUt throttle evel oi the pilot and copilot .throttle quadrants.
The system is basically non-redundant; however, the fact that the MTBF for the system
is substantially better than that of the engine, coupled with the fact that the loss of an
engine will not cause loss of control, provides the rationale for single-channel operation.

Similar controls are used by the AH-56 Cheyenne.

Autopilot Control Modes. The approach being taken toward the use of automatic con-

trols is to take maximum advantage of the proven. L-1011 hardware to provide maximum

system capability for a relatively small increase in total system cost. Therefore,

Mark I Orbiter incorporates an autoland function capable of automatic approach and

landing through rollout after the landing guidance beam is captured. The L-1011 system

is an integrated autopilot/flighi director system, so the pilot plays the role of overall

system manager and works in conjunction with the autoland fault detection/correction

logic, improving system integrity throughout the approach and landing.

The system consists of dual-dual analog computation channels for pitch and roll

steering command generation and dual analog computation chamlels for speed control.

The system interfaces with dual radar altimeters, dual scanning beam ILS receivers,
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dual control air data computers, the digital guidance computer in the spacecraft GN&C,

program flight director and HSI displays, communication and control panels, and the

PFCS computers as well as the data management computer. A block diagram of the

autopilot is shown in Fig. 2.2-10.

The autopilot/flight director system (APFDS) is fail-operative, since for any single

failure its performance is not degraded and it operates with same authority and gains.

It is fail-safe in that subsequent faults involving system integrity cause the system to be

automatically disengaged. The fault and/or disengaged status is processed by the data

management computer and displayed on hardwired annunciators in the cockpit.

The APFDS receives checkout stimuli from the data management computer for system

integrity listing prior to deorbit. These stimuli are interchecked with dual switches

on the PFCS control panel to prevent inadvertent testing during initial phases of flight.
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Fig. 2.2-10 Orbiter Aircraft Autopilot System
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In general, the L-1011 hardware will be used intact and unmodified whenever possible

to eliminate interface problems; however, S-3A hardware will be used where particular

benefit is derived from the built-in data management system interface, since the

orbiter DMS is basically the S-3A system. The autoland control laws will have to be

modified to account for the steeper approach glide paths, higher speeds, and different

flare altitude. The impact of these developments is relatively minor and will not

significantly affect overall program costs nor historically demonstrated capability.

2.2. 1. 1. 2 Spacecraft Guidance, Navigation, and Control. The orbiter spacecraft

guidance, navigation, and control system navigates, steers, maneuvers, and stabilizes

the Space Shuttle from launch through reentry down to a velocity of Mach 2. During

launch the orbiter provides guidance to the composite orbiter-booster vehicle and

subsequently to reentry below Mach 2 speeds. The spacecraft GN&C system provides

inertial navigation backup to the aircraft flight controls and terminal navigation

operations.

A "single thread" GN&C system consists of an inertial measurement unit (IMU) to

provide inertial acceleration and attitude information; a digital computer to perform the

computations required for navigation, guidance, and control; a star tracker to align

the IMU in orbit; a horizon sensor and radar altimeter (together with the star tracker)

to provide position, altitude, and velocity measurements for navigation; a precision

ranging system to provide range and range rate information for rendezvous with a

cooperative target; and attitude control propulsion system (ACPS) and thrust vector

control (TVC) electronics to provide the control laws and equation solution for steering,

maneuvering, and attitude stabilization.

The system interfaces with the aircraft primary flight control system (PFCS), obtaining

rate data from its rate gyros; the booster, providing thrust vector control and calculating

the booster engine burn AV required; data management subsystem, whose digital computer

acts as a back-up to the GN&C computer; displays and control subsystem, which displays

orbital attitude, velocity, position, and other information for crew use; communication

and tracking subsystem, through which the ground control of the vehicle GN&C functions

can be achieved; and the vehicle instrumentation and electrical power subsystems (EPS).

Figure 2. 2-11 is a simplified block diagram of the orbiter spacecraft GN&C system.
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Fig. 2.2-11 Orbiter SGNaceraft GN&C System

GN&C Functional Operations. Prior to launch, the inertial navigation platform is

aligned using the gravity vector for platform leveling and gyro-compassing to establish

azimuth. During or before this period, gyro drift, misalignment, scale factor biases,

and accelerometer biases and scale factor errors are measured, and stored in the

GN&C computer for calibration purposes. Star tracker, horizon sensor, orbit altimeter

and precision ranging system biases, as measured at the equipment suppliers facilities

(if determined to be stable), are also included in the program. During this phase, any

last-minute changes to mission planning will be loaded into the computer.

During the launch and ascent phase, the orbiter GN&C system will provide the booster

with steering commands to keep it on course relative to its programmed trajectory and

will provide engine "on" and "off" discretes to keep maximum acceleration below 3 g.

The acceleration information can be obtained either from the accelerometers in the IMU

or from the longitudinal aircraft flight control accelerometer. Rate information used

for control damping is derived from the aircraft flight control rate gyros.

2. 2-2-11 Obiter Spacecraft GNC Sstem
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Acceleration during booster engine burn, as detected by the IMU accelerometers, is
integrated in the computer and corrected with the IMIU calibration data to provide

inertial velocity. The velocity information is integrated once more with corrections

included for the gravity effects, and the initial conditions added to obtain inertial

position. When.the required staging velocity is achieved, the GN&C computer sends an
engine shutdown discrete to the booster engines and the separation sequence is initiated.

After staging, the velocity and position information stored in the computer is used to
perform the targeting for orbit injection.

The GN&C computer provides the orbiter engines with an "on" discrete and subsequently

controls maximum acceleration to +3.0g in the same manner as it did for the booster.

Guidance is provided during orbiter engine burn through the IMU acceleration and

attitude data and trajectory calculations. When the computations indicate that the

desired altitude and velocity have been achieved by the orbiter, the computer sends an

engine "off' discrete.

During coast periods in orbit, the IMU accelerometers will be disabled to prevent noise
or biases from contaminating the inertial information stored in. the computer. Position,

attitude, and velocity update during coast will be performed.

The star tracker, horizon sensor, orbit altimeter, and inertial measurement unit (for

attitude angle) will provide the independent measurements required during orbit coast.

These measurements are used for the determination of the state variables through the

Kalman filter in the digital computer. This function is performed as shown in

Fig. 2.2-12.

During the orbiter engine burniVeriod, the estimate of the state vectors will be con-

tinuously updated deterministically by integrating acceleration as measured by the IMU

and adding the initial conditions to get velocity and integrating once more to get position.

Data obtained during ground calibration (gyro misalignment, gyro drifts, accelerometer

biases, etc) will be used in the computations to increase the accuracy of the results.

The resulting information (estimated position and velocity) will be stored in the computer

to be used for initialization when the next orbital update is required.
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Fig. 2.2-12 On-Orbit and Attitude Determination

For rendezvous with the cooperative target, the precision ranging system is used to
tbtain navigation information. Through the use'of a tr'ansmitter/receiver/interrogator

on the orbiter and a compatible transponder on the target vehicle, distance to the target
and relative velocity are measured. Use of three or more transmitter/receiver

antennas on the orbiter, located some 50 feet apart, allows the determination of the

line-of-sight (LOS) to the target through phase differences and triangulation.

fThe range, range rate, and LOS angle data are processed in the GN&C computer to

detJerrnine the orbital plane and phase change, engine burn attitude, and velocity

changes required. With the targeting completed, the applicable commands are given

for vehicle orientation and start of engine burn. The subsequent steering is performed

by the computer from acceleration and attitude information is obtained from the IMU

acce lerometers and gimbal readouts, respectively.
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When the desired position and velocity, relative to the target, are achieved the GN&C

computer turns the orbiter engines off. The crew selects the desired attitude stabiliza-

tion mode (free inertial, horizon sensor control to local vertical, or target tracking)

and prepares for manual control of the orbiter for docking.

Manual control of the orbiter attitude and translation are achieved through the use of

a set of controllers, one for rotation and the other for translation, which actuate the

ACPS thrusters. The control mode is primarily acceleration for translation and rate

for rotation. Controls are provided for both the pilot and co-pilot although a third

station (with appropriate controller and displays), with a view looking through the

cockpit window in generally the aft direction, may be required if docking is to be done

through the payload bay.

Deorbit and reentry operations begin with an update of position, velocity, and attitude.

Targeting for desired reentry footprint and retrograde burn initiation point and orbiter

orientation are determined in the computer. The sequence is initiated manually and

appropriate maneuvers are automatically performed to orient the vehicle in the desired

direction. The engines are ignited and attitude is controlled by the computer and the

IMU to maintain the desired trajectory. When the computed position and velocity are

achieved, the engines are turned off, with attitude control being maintained by sensing

angle-of-attach, slip and yaw angles through the IMU accelerometers (with corrections

for local gravity affects), and correcting the errors through the ACPS. The IMU gimbal

angles will also be used to indicate deviations from the reference trajectory.

When the vehicle edxits the "blackout" regime (at about 150, 000 feet) vehicle altitude

will be updated using the orbit altimeter and the required trajectories to a number of

alternate landing sites will be'tomputed. The point in the trajectory where the controls

will be handed off to the aerosurfaces will also be calculated. The crew will select the

landing site and initiate the automatic control for the terminal phase. Acceleration and

attitude data from the MU will be used to fly the nominal trajectory with information

from TACAN, available if needed. When the hand-off point is reached, the aircraft

flight control system takes over with some period of overlap before the ACPS system
.is turned off. The aircraft flight control system is described in pr., 2.2. 1.. 1.
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GN&C Equipment. The study requirement to minimize program costs and techno-

logical risk immediately eliminated many system concepts and equipment from.

consideration, on the basis of early development status. Equipment such as the

dodecahedron inertial measurement unit, and concepts such as land mark trackers

for orbital navigational update, could not be considered seriously because of produc-

tion status in the time period 1972 through 1977 when the equipment would be required

for the Mark I vehicle. Prior to start of Mark II development, each of these and other

areas presently being demonstrated in the laboratory should be re-evaluated to deter-

mine if potential technical advantages warrant cost and risks involved.

Further discussion of GN&C equipment follows, in paragraphs a. through f.

a. Inertial Measurement Unit. In the inertial measurement area, the Carousel IV

IMU was chosen, primarily because of its low cost ($110K compared to the Honeywell

Inertial Sensor cost of $300K) and its demonstrated (in aircraft) capability compared

to the Carousel VB or the dodecahedron, neither of which are in production at this

time. Two factors remain to be resolved and could have a bearing on the final IMIJ

selection. These are: (1) the possible modification required to the Carousel IV unit

to allow operation in the ascent and space environment, and (2) whether the attitude

(gimbal) angular readout accuracies of 0.2 deg (0 to 10 deg range), 0.5 deg (10 to

30 deg range) and 1.0 deg (30 to 180 deg range) are adequate for space shuttle use.

Both of these concerns would be resolved if the Honeywell Strapdown Inertial Sensor

Assembly is used, since the unit is space-qualified and the attitude readout resolution

is better than 0. 1 minute of arc.

Some of the key characteristics of the Carousel IV IMU and the Honeywell ISA are

shown in Table 2.2-1. The Carousel VB, which is to be developed for the Titan IIIC,

has performance characteristics similar to the Carousel IV and would cost about the

same ($110K) but would use only about one-third the power.

b. Digital. Computer. The Univac 1832 general purpose computer was selected as the

GN&C computer to perform the ascent and space flight guidance and navigational func-

tions and computations. The Sperry-Rand unit was chosen for this application because

2.2-20
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Table 2.2-1

INERTIAL MEASUREMENT UNIT

Parameter Delco Carousel IV Honeywel ISA
(Used With H448)

Performance
Gyro

Non-G-Sensitive Drift (ia) 0. 1 hr 0. 10/hr
G-Sensitive Drift (l ) 0. 12 /hr/G 0.20/hr/G
G-Sensitive Drift (1a) 0. 0030hr/G 2  0. 050/hr/G 2

Accelerometer
Bias Stability 20 x 10 - G 10 x 10 G
Scale Factor Stability 350 PPM 100 PPM

Power
Warmup 1200 W 220 W
Operate 400 W 125 W

Weight 53 lb 38 lb

Developed (used on whichDeveloped (used on which Boeing 747 Airforce Agena P711
program)

When Qualified Mid 1971

Quantity Built/Flown 6/1

Cost
Modification and Requal $1.0 M (LMSC Estimate) $0
Per Unit $110 K $300K

of the advantages inherent in using the same computer in both the GN&C and data

management systems (DMS). The DMS unit which has a dual processor and dual

memory stack (65K words) will operate as a backup to the single processor, single-

memory stack (32K words) GN&C unit. It will operate in parallel with the GN&C

unit during flight, performing simultaneous computations but will be functionally off-

line until cornmmanded through the data management system to functionally replace the

GN&C computer. The use of the same computer in GN&C and the DMS will reduce the

total software generation and validation effort because the identical program will be used

in both units.
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Other computers investigated during the study were the Delco Magic 362, CDC

Alpha-1, CDC 469, and GE CP-24A, IBM 47T units. All of these remain strong

candidates for future consideration because of the weight, power, and hardware cost

advantages. Table 2.2-2 gives some of the key characteristics of the computers

considered.

c. Orbital Initialization and Update Sensors. For alignment of the IMU in orbit,

the star tracker was selected because of its accuracy. Other methods which could be

used with the equipment already available on the vehicle would be to align the IMU in

two axes through the establishment of the local vertical using the horizon sensor and

fixing the third axis using the precision ranging system with a ground transponder, or

the gyro compassing technique. The latter method takes advantage of the dynanmic

coupling between the roll and yaw axes inherent in an earth-orbiting vehicle which is

kept locally horizontal. The roll rate error is used to correct for out-of-orbital plane

yaw errors. The star tracker selected was the Bendix Apollo Telescope Mount (ATM)

unit, being developed for the Skylab program. Other units considered were the Litt.n

LTN 300 unit developed for the FB-111 airplane, and the Kollsman KS 199 which was

being developed for the Manned Orbiting Laboratory. The reason for the selection of

the Bendix unit is that it is being developed for, and will be qualified to operate in,

long-term space use. It can be used with little or no change for the shuttle application.

The Kollsman unit requires additional development and testing, and the Litton unit might

have to be repackaged to withstand the lengthy space operation.

Table 2.2-3 shows a comparison of the three candidate systems.

The method selected for orbital update was to determine inertial position by establish-

ing the line-of-sight (LOS) angles between two or more stars and the local vertical

and distance from the center of earth.

The same star tracker required for IMU alignment is used to determine the star LOS,

a horizon sensor is used to establish the local vertical, and a radar altimeter is used

to determine altitude.
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Memory Time Cycle
Word Length Add Multiply No. Of

Candidate (Bits) (t-sec) Instructions

CDC 32 1,.0 184
Alpha -1 2.0 I No:

7,0

IBM 32 2.5 61 DRO
4X CP 5.0

18.1

CDC 469 32 1.6 44 RA
2.4 iNDR

10.4 Plat

Optit

GECP- 24 1. 00 53 HA
24A 3.75 NDR

30.5 PW:

Delco 16 2.0 44 RA
Magic 4.0 DR;
362 12.0 Cor.

Univac 32 0.75 131 RA
1832 3.00 DRC

9.00 NDf:

c,2 ,2,; 6 ?



Table 2.2-2

ORBITER COMPUTER COMPARISON

fMemory Circuit Arithmetic

Isctions Type Basic/Max Words Characteristics Features MTBF

184 L:andom Access (RA) 16k/131k LSI/IC Fixed or floating 6,000 hr

uondestructive Direct Addressing 115v, 400 Hz Point, Double Predicted

iadout (NDRO) + 0.65k 30 Input Power Precision

:estructive Readout 2's Complement,
IiO) Trig Instructions C-

61 DnO Core 8.19k/ 3 2k TTL Flatpacs Fixed Point 5,158 hr

Direct Addressing 2's Complement,

for 24k Full Length

.4 iA 4k/64k MOS-LSI Fixed Point 8, 000 hr

N DRO Needs 2's Complement Predicted

Plate Wire Memory Converter

pLtionai RD Oly

53 RA 8k/32k MOS-TTL Fixed or 12,000 hr

NDRO Floating Point Predicted

!-

}-

44 EA 8k/65k MSI-TTL Fixed Point, 5,000 hr

DRO Double Precision Predicted

Core

131 iA 32k/96k MSI Fixed and Float- 2, 000 hr

RO ing Point Option,

N UPO Double
Precision
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Support
Software Dev/Qual

MTBF Availability Status Weight Power Remarks

'g 6, 000 hr All Software In Production, 44 lb 330 W
Predicted Support Program Qualified to (32k)

Available, MIL-E-5400,
, Run On CDC 6400, Class 2

ouis CDC 3300
iXDS Signal 7

5, 158 hr Software Available, In Production, 65 lb 250 W Liquid Coolant
rt, Run on IBM 360 Qualified to (32k)

MIL-E-5400
Class 2

8, 000 hr Assembler 3 Prototypes 6.5 lb 15W No Active Cooling
nt Predicted Simulator Produced (32k) Required

Available,
FORTRAN V1
Compatible With
CDC 6600

12,000 hr Assembler One Engineer- 35 lb 35 W No Active Cooling
Predicted Simulator (Regis-- ing Model Pro- Required

Logic), Test and duced, Qual
Diagnostic Routine, Test Scheduled
Utility Routines, for 2nd Quarter
Library Routines 1972

5,000 hr Assembler Basic First Proto- 25 lb 114 W Air Cooled
:.iion Predicted Compiler type Scheduled (32k)

(IBM 370) Dec, 1971
Simulator in De-
velopment
Automatic Check-
out for Program
Validation

2,000 hr ULTRA Macro In Production 126 lb 600 W+ Air Cooled
Assembler (32k)
CMS-2 Compiler
Language
SLIC Librarian
and Corrector
UTIL Service
Routine
SOLO Leader

______ _____ ______________
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Table 2.2-3

ORBITER STAR TRACKER COMPARISON

Bendix Litton Kollsman
Parameter Apollo Telescope LT 300 KS 199

Mount (ATM)

Performance
Accuracy 30 sec 15 sec 15 sec
Field of View 1.00 2.00 1. 00
Gimbal Range ±800 Outer, ±600 Outer, ±550

±900 Inner ±750 Inner
Star Magnitude - - -

Reliability (MTBF) 5,000 hr 400 hr 12,000hr

Power 25 W 20 W 23 W

Tracker 39 lb . 62 lb 35 lb
Weight Electronics 28 1b 28 lb 35 lb

Developed for Which Program Skylab FB 111 MOL

Development Status
When Qualified Nov 1971 June, 1971 Late 1970
Number Built 6 109 1
Number Flown 0 90-95 Units 0

Cost LMSC Est. LMSC Est.
Development 0 $1. OM $1. OM
Per Unit (Order of 10) $250K $200K $200 K

The horizon sensor selected was the Barnes 13-166 conical scan system, which uses

a thermistor bolometer to locate the earth horizon along the sensor scan path by

differentiating between the ear.th and space infrared energy levels. This system has

been qualified to space environments and a number of systems have flown on earth-

orbiting missions exceeding 30 days.

The 13-166 design uses the same basic concepts, the identical electronic circuits,

scan motor, and bearings as the Model 13-156. which has flown with great success on

over 100 Agena space missions. The 13-166 model can be used for the shuttle without

any change in basic design.
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Other candidate systems investigated were the Quantic Model IV and the Lockheed Low

Altitude Horizon Sensor. These two systems were eliminated from consideration be-

cause of their early development status (neither have been qualified), although the

attitude accuracy of both systems should be significantly better than the Barnes system.

Table 2.2-4 shows a comparison of some of the key features of the three sensors

investigated.

The orbit altimeter selected was the GE 7631 111 G1 system being developed for the

Skylab program. In the few weeks of the study, no other source in industry with a

system approaching the capability of the GE unit could be found. From discussions

with General Electric, apparently all shuttle requirements can be met without modifica-

tion. Other suppliers contacted were Westinghouse and Teledyne/Ryan. Both of these

suppliers had developed test systems for the early Saturn launches; however, considerabl

development would be required by both to upgrade these systems.

Other methods of determining altitude were investigated and two of these will be used

as backup methods for the shuttle. These are: (1) using the horizon-to-horizon

angle measurement taken by the horizon sensor, and (2) using the range and line-of-

sight measurements taken with the precision ranging,system on the vehicle and a

ground transponder.

The reason that the orbit altimeter was chosen over the horizon sensor is that the

accuracy of its measurement (over ocean) is within two meters compared to the 1 to

2 miles accuracy of the horizon sensor at an altitude of 100 miles. The reason the

altimeter was selected over the precision ranging system (PRS) was that the PRS,

capable of measuring altitudes beyond 200 miles, is still in the development stage,

although expected to be in production within 5 to 10 years. Also, even for earth orbits

below 200 miles, ground transponders within reach of the orfloard interrogator would

be required during measurement. If transponders are available for other usage, such

as for orbital update and landing, the PRS would be a strong candidate to replace the

orbit altimeter.
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Table 2.2-4

ORBITER HORIZON SENSOR COMPARISON

Barnes Quantic LMSC
Parameter 13-166 Mod IV Low Alt Horizon Sensor

r Performance
0
n Accuracy Classified ± 0.05 deg ± 0.05 deg

Horizon Variation Effects 0. 10 deg ± 0.06 deg ± 0.06 deg
Altitude Range 80 - 400 nm 80 - 25K nm 80 -400 nm

m Acquisition Ragge a 12 deg £ 140 deg (400 nm) 1 15 deg
Control Range ~10 deg ±20 deg (300 nm) + 5 deg
Output Type Analog 1 volt/deg Digital 14-Bit Serial Digital 16-Bit Serial

Analog and 1 voit/deg

r Reliability 0.942 (30 Days) 0. 9999 (6 Months) 0.977 (30 Days)

Power 25W 20W 20W

" jWeight 25 Ib 18 lb 20 lb

Dimensions (in.) Tracker 5.1 x 4.8 Dia (2 each) 8-1/2 x 5 x 5 (4 each) 7 x 6 x 5 (4 each)
) (LX'WXH or LXDIA) Electronics 11.1 x 8.5 x 3.2 10 x 8 x 4 Not required

O Developed for Which Program. AF Agena

-Development Status

> When Qualified Oct 1971
1_ Number Built Prototype, Qual and Partial Prototype Partial Prototype

2 Flight
Number Flown 0

Cost I
Development $1.4M $1.0M C Y
Per Unit (Order of 10) $100K $200K $80K ,• >

1-0
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d. Rendezvous Sensor. For rendezvous navigation, the Cubic precision ranging

system (PRS), microwave radar and laser radar were considered. Table 2.2-5 gives

some of the characteristics of laser and microwave radar characteristics and Table 2.2-6

lists characteristics of the precision ranging system.

Table 2.2-5

RENDEZVOUS SENSOR CHARACTERISTICS

Laser (Coop) Radar (Coop)

Search Angles ±150 ±:900 x 900

Range, Max. 75 nm 400 nm

Range Rate, Max. 10,000 n/sec 4900 ft/sec

Accuracy > 50 nm ±0. 1%

Range Rate -±0.5% <50 nm ±80 ft

Range Rate ±1 m/sec ±1. 0 ft/sec

OS Agles 0. 02 deg I g! deg

LOS Angles Rate ±0. 003 deg/sec

Shuttle 7.5 in. dia x 17 in. Ig. (cyl) 28 x 8 x 5 in.
and electronic

Size 6 x 12 x 12 in.

Weight 24 lb 75 lb

Power
Consumption 20 watts 250 watts

Antenna Aperture Xmtr. 0. 5 in. dia
Rec. 2-3 in. dia 24 in. dia

Space Station

Size 4 in. dia 12 x 7.5 x 6 in.

Weight 2 lb 14.5 lb

Power
Consumption N/A 75 watts

Antenna Aperture N/A 4 in. dia
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Table 2.2-6

CUBIC MODEL CR 100-4 PRECISION RANGING SYSTEM (ORBIT MODE)

Error Source Icl Magnitude

Random Error

Ranging Error Due to Finite Signal-to-Noise Ratio and
Equipment Added Noise 1. 0 ft
Phase Shift Over Dynamic Range of Ranging Operations 1. 0 ft
Phase Shift With Temperature Over Operating Environment 1. 0 ft

Phase Shift of Interrogator Due to Vibration, Shock and
G-Loading Negligible

System Error Due to Craft Dynamics (25, 000 ft/sec) and
1000 ft/sec2  

0.2 ft
Multipath Error in Ground-to-Air Range Links 3.0 ft

Digitization Error 0.3 ft

RSS Total 3.5 ft
Bias Error

Calibration (Equipment) 1.0 ft
Scale Factor

Stability of Crystal Oscillators 0.1 ppm
Uncertainty in Velocity of Flight , 0.5 ppm

Propagation
N Approximation 50.0 ppm
End Point Correction 10.0 ppm

Electrical Characteristics

Carrier Frequency
Transmitted Power L- or S-Band
Receiver Sensitivity 12 watts

Medium Range and Rate Mode -119 dbm
Long Range and Rate Mode -125 dbm
Range Rate Only " -131 dbm

Power Consumption
Interrogator 120 watts
Transponder

Standby 7 watts
Transmit 80 watts

MTBF
Interrogator 2300
Transponder 7000
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The laser radar was considered a strong candidate because of its accuracy, low weight,

and low power, but was considered a limited use device compared to the multipurpose

PRS because of the potential hazard to the eyesight of unprotected crew members on the

target vehicle (conventional radar is also of limited use and was discarded for this

same reason and because of its higher power requirements).

The system chosen (PRS) is a range and range rate measuring device using phase

comparison between the transmitted signal and the signal returned from a transponder

for range determination and the doppler effect to determine range rate. Figure 2.2-13

describes the basic technique of determining distance. Three antennas, located at

different points on the orbiter, can be used to determine direction to the target through

phase differences and triangulation.

TRANSMITTER TRANSPONDER

RECEIVER

01110
OSCILLATOR

-1 01100

R t RANGE: 0 0 0 1 0 COMPUTER

Fig. 2.2-13 Phase Comparison Ranging
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An advanced version of the PRS can also be used for orbit update and as a navigation

aid for landing. For orbit update, position and velocity can be obtained through the

use of one interrogator on the vehicle and one transponder on the ground at a precisely

known location. Direction to the ground transponder can be obtained by using the same

three antennas used for rendezvous. The ambiguity in orientation about the direction

vector to the ground transponder can be resolved through a single star sighting or by

using the horizon sensor to control to the local vertical. For landing, range and range

rate can be obtained through the use of one or more transponders at the landing site

and altitude and vertical velocity can be obtained through triangulation with three or more

transponders on the ground near the landing strip. These same landing site transponders

can be used for the orbital update if they fall within range of the interrogator on the

orbiter during orbit passes.

Cubic has in production for the Air Force the Model CR 100-1 (CIRIS) unit, which has

a limited range of 200 miles. This model could be used unchanged for rendezvous and

landing purposes but would not be adequate for orbital update. Since the primary use

of the PRS is for rendezvous, with it being used as backup to conventional ILS

(horizontal test flights) or the microwave scanning beam (vertical flights) for landing,

it is proposed that the existing limited range model CR 100-1 be used on the early

Mark I vehicles and the longer range CR 100-4 model be incorporated when that system

becomes available. Table 2.2-7 lists the expected errors when PRS is used for approach

and landing navigation.

e. Attitude Control Propulsion System (ACPS) and Thrust Vector Control (TVC)

Electronics. The ACPS and TVC electronics used on the orbiter will be similar to

those used with great success on more recent Agena and other Lockheed space programs.

The same depth of technology developed in the electronic and packaging design, parts

application, and materials ancprocesses selection areas for these programs will be

applied to the orbiter electronics.
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Table 2.2-7

MODEL CR 100-4 RANGE AND RANGE RATE ERROR BUDGET
(APPROACH AND LANDING MODE)

Error Source lor Magnitude

Range

Random Error
Ranging Error Due to Finite Signal-to-Noise Ratio and
Equipment Added Noise 0.3 ft
Phase Shift Over Dynamic Range of Ranging Operations 0. 5 ft
Phase Shift of Interrogator Due to Vibration, Shock and
g-Loading Negligible
System Error Due to Craft Dynamics (2000 ft/sec) and
1000 ft/sec - 2  0.2 ft
Multipath Error in Ground-to-Air Range Links 3 cos 0 ft
Digitization Error 0.3 ft

RSS Total (3 cos 0)2 + (0.7)

where 0 = elevation angle

Bias Error
Calibration (Equipment) 1. 0 ft
Phase Shift With Temperature 0.5 ft
Scale Factor

Stability of Crystal Oscillators 0.1 ppm
Uncertainty in Velocity of Light 0.5 ppm

Propagation
N Approximation 50.0 ppm
End Point Correction 10.0 ppm

Range Rate

Velocity Independent
Rate Error Due to Finite Signal-to-Noise Ratio and Equipment
Added Noise 2 0.01 ft/sec
System Error Due to Craft Dynamics, a = 1000 ft/sec 0.001 ft/sec
Digitization Error 0.014 ft/sec
Multipath 0.01 ft/sec

RSS Total 0. 02 ft/sec

Velocity Dependent
Stability of Crystal Oscillator 1 ppm
Uncertainty in Velocity of Light 0.5 ppm
Propagation

N Approximation 50.0 ppm
End Point Correction 10. 0 ppm
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The ACPS electronics for the orbiter performs much the same functions as the

electronics used on the Air Force P467 program to drive the monopropellant (hydrazine)

thrusters on this large space vehicle. The main differences between the two applications

are that the P467 electronics drive 8 thrusters and the orbiter electronics must drive

a total of 32 thrusters; and that the logic involved in thruster selection for the shuttle

vehicle will be significantly more complex because of the number of thrusters and the

interaction between translation and rotation created by the lack of pure couples.

Figure 2.2-14 shows the combinations of thrusters required for rotational and trans-

lational control. Figure 2.2-15 shows a typical ACPS electronics channel.

The TVC electronics for the orbiter is similar to that used for the P110 Air Force

Agena Program and will derive most of its circuit and packaging techniques from that

unit. The same basic circuits were used previously on the Agena target vehicle for the

Gemini program. Figure 2.2-16 shows the signal phasing associated with gimballing

the four engines and Fig. 2.2-17 is a block diagram of the Orbiter TVC electronics.

THRUSTER ENGINE TRANS ROTATION
GROUP QUANTITY X y Z 0 ; - -

2 + + +

2 3 + 2 12

3 2 " - "
Y 17

6 2 ,+ + -

7' 3 + + 9

82 -. - + €

9 3 - ' ' Z
X

10 3 +
THRUSTER GROUP

11 3 -'A . + ASSIGNMENTS

1: 3 4 .h, -.

32 TOTAL
D05722

Fig. 2.2-14 ACPS Thruster Matrix
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Fig. 2.2-15 Typical ACPS Drive Electronics (X Translation and Yaw B0:& En)
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Fig. 2.2-16 Orbiter TVC Phasing
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Fig. 2.2-17 Orbiter TVC Electronics

f. Equipment Summary. A list of the orbiter spacecraft GN&C system equipment

is shown in Table 2.2-8, together with the part number, weights, present or planned

usage and the quantity required by program phase.
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Table 2.2-8

ORBITER SPACECRAFT GN&C EQUIPMENT

QUANTITY/FECTIVITY

EQUIPMENT PART WEIGHT PRESENT RK I
NO. PER EACH OR PLANNED FF FVFM FVFUN OPER

r USAGE FIIF FVFM FVFUN OPER

On CAROUSEL IV 53 LB 747 2 2

7 CAROUSEL VB 58 LB TIIIC
I INTERIAL REFERENCE UNIT OR AGENA 3

Hm HIONEYWELL 448 38 LB

DIGITAL COMPUTER . UNIVAC 1832 126 L6 S-3A 1

STAR IRACKER BENDIX ATM 77 LB SKYLAB 22

r" B\ARNES 13-166 25 LB AGENA 2

HORIZON SENSOR QUANTIC MOD IV 18 LB
HORIZON SENSOR OR 2

SLMSC LAHS .10 LB 2

ci GE 7631111GI 45 LB SKYLAB 2

SO>BIT ALTIMETER DERIVATIVE OF
A A,!OVE UNIT 40 L B GEOS 3

PENDEZ. AND LANDING DME (PRS) CUIlC R 0-1 25 LB - 2 2

C) OR CR 100-4O 8 8 8

MAlN ENGINE GIMBAL SERVO MOOG 50 LB SIVB 8
U {(TVC) ACIUATOR PKG

1 3 3 3

SSIMILAR TO AGENA 33 3 3

< TVC ELECTRONICS P110 30 LB AGENA 8 CHANNELS

TVC ELECTRONICS EACH

SIMILAR TO AF 3 EACtl AS 3 3 3

ACPS ELECTRONICS P467 ACPS 5 LB P467 ACPS DRIV[RS FO,
ELECTRONICS 12 ENGINES

SUBSYSTEM INTERFACE UNITS " -- 55 L NEW 3 3 3 3

TOTAL 
22 22 30 30

__ __ __ _ _OTA___ __ _ I _ __ __ ___ __ I__ ___ __ __ __ __ __ __ __
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2.2. 1.2 Communications, Tracking, and Navigational Aids. The communications

subsystem for the Mark I orbiter (Fig. 2.2-18) comprises the equipment necessary

for data and voice up-link and down-link, crew intercom system, and recovery

beacon for all phases of shuttle operations.

For atmospheric flight operations (horizontal flight test, ferry, and approach and

landing following reentry), standard aircraft UHF voice communications is provided

through the UHF transceivers, antenna switch, and combination UHF/S-band

scimitar-notch (SCIN) antennas. Voice utilizes the S-3A audio panel and is switched

through the panel controls and the S-3A communications SIU to the UHF transceivers.

Use of the VHF beacon applies primarily to atmospheric flight test vehicle recovery

operations.

Spacecraft Communications. For exoatmospheric voice communications, the

Apollo S-band equipment (premodulation processor, unifield S-band equipment,

S-band power amplifier, and antenna switch, and the combination antennas) are

utilized. Voice again utilizes the audio panel and communication SIU for proper

sw\itching.

Aircraft/Spacecraft Communications. Telemetry (PCM and FM) utilizes the

S-band equipment for both aircraft and spacecraft applications to transmit develop-

mental and operational instrumentation data, as well as coded data from the data

management system. Crew intercommunication equipment is contained in the audio

panel for both applications.

Equipment Selection. All equipment is selected based on existing spacecraft and

aircraft applications when high reliability has been proven for voice data and

command communication. The S-band equipment is Apollo-proven and the UHF

audio and interface equipment is from the S-3A aircraft. A complete list of equip-

ment is given in Appendix D.

The Apollo unified S-band equipment combines voice and data communication,

tracking, ranging, and telemetry on a single (rest) frequency of 2272. 5 +. 455 MHz.
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The VHF recovery beacon transmitter frequency is 243 MHz with 30 percent

modulation with a 1000 Hz square wave, which is keyed on two out of five seconds

on a cyclic basis.

The UHF equipment is tuned through the communication SIU to the selected channel.

The antennas are placed on the upper and lower surfaces of the orbiter to give full

360-deg coverage. Each is a notched scimitar type to give excellent efficiency on

both S-band and UHF frequencies. The antenna placement is shown in Fig. 2.2-19.

The Apollo equipment is internally redundant on a modular basis and requires no

external duplication of equipment. The UHF equipment is not internally redundant

but is highly reliable; therefore, dual redundance is considered adequate.

Tactical Air Communication and Navigation (TACAN) System. TACAN systems

provide the pilot and co-pilot with bearing and distance indications to selected

grotund TACAN stations. Audio tone identification (Morse code) of the selected

ground stations is provided to the pilot and co-pilot headphones through the orbiter

interphone system. In addition, the pilot and co-pilot may select and fly courses

about the selected ground stations by following deviation indications on their HSIs.

The pilot HSI will indicate how far the orbiter is away from a preselected course as

well as indicate the position of the ground station from the aircraft. Bearing

indications up to 360 degrees is indicated on"HSIs with distance up to 300 nautical

miles being indicated on the same indicators. The orbiter is equipped with two

complete and independent TACAN systems whose components are located as follows:*

o Two RT units, located in avionics equipment bays

o Two antennas, located on the bottom fuselage

o Two antennas, located on the upper fuselage

o Two control panels, located on the center console.

*Each system contains three circuit breakers (C/Bs); a 28-Vdc, a 115-Vac and a
26-Vac, all of which are located on the C/B panel.
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Fig. 2. 2-18 Communications Subsystem
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Fig. 2.2-19 Antenna Placement
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The control panel contains controls for pilot operation of the system. Control

functions are as follows:

o The knob marked VOL controls the audio volume level of the identification
tone.

o The MODE switch allows selection of 126 channels in "X" mode and an
additional 126 channels in "Y" mode when the surface beacons gain this
capability.

o The TENS knob controls the first two digits and the units knob controls the
last digit in the channel indication window.

o The indicator displays channels 1 through 126.

o TOP or BOTTOM antenna can be selected manually or automatically by
the ANT switch.

o The center control switch controls off-on power and reci.ever-transmitter
functions. Transmitter ranges of 70-200 and 300 nautical miles can be
selected.

o The TEST switch energizes BIT circuits in the RT unit that automically
checks the status of the system.

o GO/NO-GO lights indicate system status.

o Reference to the fault indicators or the RT unit locates the fault to a
particular unit, i. e., RT unit, control panel.

Range, bearing, course deviation, and validity, are displayed on the pilot's and

co-pilot's HSI when selected on the integrated navigation display selector. A

desired course, referenced to magnetic heading, is set-in by the COURSE SET

knob. This course is displayed in the COURSE window and by the course arrow.

The deviation bar indicates deviation of the orbiter left or right of this desired

course. Deviation signals are switched through the flight director computer (FDC).

The bearing pointer, outside the compass card, indicates bearing to the selected

TACAN station. Distance to the station is displayed in the MILES window; the

window is also masked when range information is invalid. The TO-FROM indicator

points "to" the head of the cour~ arrow when the selected course is within 90

degrees of the bearing to the station as indicated by the bearing pointer. The

TO-FROM indicator points "from" the head of the course arrow when the selected

course is more than 90 degrees from the bearing to the station, as indicated by

the bearing pointer.
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The receiver-transmitter performs the major functions of transmitting and receiving

coded RF pulse pairs and single RF pulses, decoding the received pulses to recover

bearing and range information, and performing bearing and range computations.

Transmission and reception of signals is accomplished over a common antenna

system (not part of the navigational set). The antenna system consists of two

antennas that are switched at a 0. 1-cps rate when the antenna selector switch is set

for automatic operation and the system is not locked in range or bearing. The

signal for switching antennas is developed by the receiver-transmitter.

TACAN units were selected as navigation aids for their built-in compatibility with the

data management computer through the navigation data repeater and converter. This

interface conveys system status and display information. The former is processed

in the GPDC and the latter in the navigation data repeater and converter (NDRC) for

selection by the pilot/co-pilot on the navigation display selectors.

Instrument Landing System (ILS). Provisions were made in the orbiter avionics

for conventional instrument landing system (ILS) receivers as a navigation aid for

horizontal ferry flights and for use throughout the initial phases of horizontal flight

test. Several alternatives to the conventional ILS were investigated including:

o Autonomous Radar Approach Systems

* Precision Ranging Systems

o Microwave Landing Guidance Systems

The conventional ILS approach was adopted initially for the following reasons:

o The autonomous radar approach requires a radome of significant size and

associated equipment of sufficient cost and complexity to rule them out on

the basis of the cost and weight of the equipment, the software additions,

the redundancy required, projected against reliabilities, and system

development costs. '1~he C-5A is the only aircraft planned to implement

this automatic mode. There are operational requirements on the C-5A

requiring it to land without ground aids. For this concept to hold true the

onboard radar system must have exceptional resolution to "see" the end of
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the rmunway. The C-5A system now uses corner reflectors on the runway

end for accurate radar approach calculations. For the shuttle application

this approach was considered outside the realm of off-the-shelf philosophy.

'o The precision ranging system approach requires the terminal facility to have

at least three geometrically positioned transponder stations. These are at

present located at no facilities to our knowledge. The cubic 100-4 is not

presently in production. The positions of the airports across the CONUS, which

can expect a shuttle visit are unknown at this time, so pricing the ground station

costs would be indeterminate. At present the PRS is projected for spacecraft-

type operation, requiring an antenna on top behind the cockpit area. Its use as

a landing aid would require an additional antenna mounted on the bottom of the

orbiter. This requirement, in addition to the added costs for redundancy and

transponder stations, makes it an unattractive alternate. In addition, there

has been no previous development on such a landing aid and it would therefore

require extensive development (which violates the off-the-shelf principle).

, The microwave landing guidance system (MLGS) is the most attractive alter-

native, but has the fundamental drawback of disuse throughout the National

Landing System. To be of use, numbers of ground stations would be necessary

throughout the CONUS, at all selected sites for shuttle recovery. There is

also no consensus on the FAA's part for a preferred MLGS. Studies are under

way now on this and it is presently estimated that the MLGS will be operational

within the next 10 years in the United States.

A survey of existing and planned landing guidance systems was completed at GELAC,

in conjunction with RTCA SC-117 committee activities, and it points out that several

development models for a microwave landing guidance system (MLGS) are available

for use. These include the Honeywell STATE, LFE PAALS, Bell SPN-42, AIL AILS,

AIL C-SCAN, and the AIL SHORSCAN systems. Any one of these systems is capable of

nmultipath guidance; however, none have been throughly tested against the requirement

for the microwave landing guidance system (MLGS) preferred by the RTCA.
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In the absence of a readily available alternative, ILS receivers meeting the requirements.

of ARINC Characteristic 578 were chosen for the initial horizontal flight tests. To

prove the high glideslope power-off autoland prior to FVF, inclusion of a development

model MLGS at a selected ground facility, e.g., Edwards AFB would be recommended,

based on trade study results evaluating several candidate systems against SC-117 committee

requirements.. As soon as they become available, the production MLGS should be in-

corporated in the shuttle and at all prime and alternate ground facilities.
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2.2. 1.3 Electrical Power. The orbiter electrical power subsystem (EPS) consistr

of two elements: (1) power generation and (2) power distribution, including condi-

tioning and control. Power is generated to provide vehicle average loads, peak loads,

and the total mission energy requirement. EPS design requirements and the approach

to the phased development of the Mark I orbiter are described below. The groundrules

for the EPS design are listed in Table 2.2-9.

2.2.1.3. 1 Power Requirements. Initial Mark I shuttle test flights will consist of

horizontal atmospheric flights and subsequently lead to vertical flights into orbit. The

horizontal flight avionics requirements are less than for orbital flight; hence only

aircraft subsystems are planned for use in order to reduce annual costs. The aircraft

EPS configuration selection depends on the spacecraft orbital requirements and the

orbital EPS configuration.

User power requirements are summarized in Fig. 2.2-20 for a 7-day orbital mission

and include a payload power requirement provided by NASA for the LMSC Alternate

Avionics System Study. While payload power requirements have not been well

established, a design that anticipates the payload power requirement is of interest.

This requirement is defined as 3 kW average, 6 kW peak for periods of orbiter low

power requirements a.nd 500 W average, 800 W peak 'for periods of orbiter high power

requirements. The spikes in Fig. 2.2-20 indicate worst-on-worst additions of peak

power requirements.

Table 2. 2-10 shows average power requirements of the major users for horizontal

flight and orbital missions. Aircraft subsystems and airbreathing engine fuel booster

pumps are major power users during atmospheric flight. Spacecraft subsystems and

pumps for circulating main rocket engine cryogenic propellants are major power users

during launch and ascent phases of shuttle operation. On orbit, spacecraft subsystems

and the payload are the major power users, The lower portion of Table 2.2-10 shows

total electrical energy required for three different missions. The 12-hr and 7-day

missions include payload power requirements described above.
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Table 2.2-9

ELECTRICAL POWER SUBSYSTEM DESIGN GROUNDRULES

o Emphasize low-cost minimum technology design

o First horizontal flight may omit spacecraft equipment required only

for orbital flight

o FO/FS design not required

o Make maximum use of existing spacecraft and aircraft equipment

o Control environment of aircraft equipment that is used in the

orbiter

o Minimize extent of required equipment design modification or

development

o Select Mark I design for ease of growth to Mark II design

o Mark II development not to be over 50 percent more in cost than

Mark I

FUEL CELLS
APUs APU

SUBSYSTEM
CHECKOUT

APPROACH
& LANDIN

LAUNCH
& ASCEN RENDEZVOUS

SI0 & DOCKING? 10 ORBIT

2 OPERAT ONS

SPAYLOAD

-REENTRY

POST-LANDING-

0 L0 2.0 3.0 1 165 166 167 1
TIME (HR)

D055f,7

Fig. 2.2-20 User Electrical Power Requirement Summary - 040A Orbiter
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Tabl 2.2-10

ELECTRICAL POWER S-r:-SYSTEM, REQUIREMENTS

ORBITAL FLIGHT

MORIZO;, . LA'N H ORBIT APPROACH
POWER USERS FL IG AND ASCENT OPERATIONS AND LANDING

AIRCRAFT SUBSYSTEMS 5 Kr 5 KW

ABES FUEL "DOOSTER PUMPS 0 VW 0 KW

ROCKET ENGINE PROPELLANT
CIRCULATION FOLLOWING
LOADING 4.5 K-W

SPACECRAFT SUBSYSTEMS 4 W 4 KW

PAYLOAD 3 KW

MISSION ENERGY

3 HR HORIZONTAL FLIOGT 42 KW-HR

12 HR ORBITAL PAYLOAD LAUNC 106 KW-HR

7 DAY LOGISTICS J 9I4 KW-HR

2.2.1.3.2 Aircraft EPS. Figure 2.2-21 shows the aircraft EPS configuration for the

first Mark I Orbiter horizontal flight. 'Th power generation subsystem is composed of

three 200/115 Vac spray oil-cooled gencr;at ors, driven directly by three auxiliary power

units (APUs) which also drive hydraulic pItNps for aero-control surface movements.

Generator speed is maintained within -:5 jrrcent of the nominal 12,000 rpm, and they

are not operated in parallel. One gencrator will support the total load requirement, and

switching to replace failed units is ernployd. Two 10 armp-hour NiCd batteries are

provided for emergency EPS control powr when generators are not running.

The power distribution, conditioning, aI)d control subsystem includes generator control

units that provide generator protection, (r,)ntrol, and voltage regulation. Three-phase,

four-wire ac power is supplied to the 1c '.oanerator distribution unit, which distributes

power to the airbreathing engine fuel bo:!,nr pumps and three transformer-rectifier

(TR) units rated at 200 amps each. Tho 'it units supply 28Vdc power to the main dc

distribution unit which, in turn, distribu f: power to the power distribution units

throug'out the vehicle. One 'TR unit c;II, silpport the vehicle load. Four static three-phase
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L= .-.. . UNIT A.

Fig. 2.2-21 Electrical Power Subsystem Schematic - Aircraft

115 Vac, inverters supply centralized conditioned ac power to the inverter ac distri-

bution unit for avionics users. The units do not operate in parallel, and one unit in

each set of two is required to support the load.

Distribution units for dc, inverter ac,, and generator ac power contain contactors and

circuit breakers that are controlled by hardwires and used to connect power sources

and conditioning equipment to buses and to protect buses from distribution system and

user faults. Reverse current relays are contained in these units to protect fuel cells

and transformer rectifiers. Sensing devices are also located in the distribution units

to automatically switch defective equipment off buses and place backup equipment on

buses.

Two redundant buses each are used for dc.distribution, inverter ac distribution, and

generator ac distribution systems. Subsystem Interface Unit (SIU) interfaces indicated

in Fig. 2.2-21 will be located in one SIU forward and one SIU aft to handle combined
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power generation and power distribution, conditioning, and control subsystems. Since

the EPS functions are safety critical, most of the controls and instrumentation will be

hardwired to the crew stations for manual override of automatic controls. The data

management subsystem will provide selected EPS sequencing and configuration changing

functions, using EPS software inputs and the SIU interface with the EPS control com-

ponents. Operational instrumentation will be used by the data management subsystem

to provide redundancy management for selected EPS components.

2.2.1.3.3 Spacecraft EPS. The spacecraft EPS is designed to meet increased

requirements of orbital flight by the addition of equipment to the horizontal flight con-

figuration. As shown in Fig. 2.2-22 , three H2 -O 2 fuel cells with reactant tankage are

added to the horizontal flight EPS configuration to provide a lightweight primary power

source for the shuttle orbital mission. Three fuel cells provide 28Vdc power to the

orbiter from prior to liftoff to the completion of the landing phase. Each fuel cell is

rated at 8 kW continuous power. A fuel cell can provide up to 100-percent overload

power for short periods and, thus, fuel cell fail operational/fail safe capability is

provided. The cryogenic tankage provides supercritical storage of the H2 and 02

reactants in a dual set of tanks that will provide fail safe capability for the 7-day shuttle

mission. -- ,. [oYo
DC AC GEN

EXT. BUS i REPRESENTATIVE ONLY DISTRIBUTION GEN

POWER TR 1 FShI1±

1 EMER ,,I 7-GENCYl F I _ Jr- BATTERY -I TR

STAC INV 0EXT AC
S IINVERTER f~ P AC [ POWERI BUS GENERATOR

SICS INVERi 1 I AC LOADS

____ STRIUTiON 1SELL 2 ,. UNI

I .. iCU
'oIr INVERTER "- I- T ul _ l -. EE T

SFUIS 2 AC LOADS

LMEI AIN ui I1  4  E

Fig. 2.2-22 First Vertical Flight EPS - Mark I Orbiter
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The high average power requirements shown in Fig. 2.2-20 at the beginning and end

of the orbital mission were previously identified with: (1) main rocket engine

propellant circulation (four J-2S H2 -0 2 engines) from propellant loading to orbiter

ignition, and (2) airbreathing engine fuel booster pump operation during orbiter

landing operation. Rather than sizing the fuel cells for these high average requirements,

the ac generators on the Auxiliary Power Units (APUs) are used to supply these loads.

The APUs are operated during the short booster phase to assure readiness for orbiter

rocket engine gimballing. The APU operation during approach and landing is similar

to that for the horizontal flight test program.

Transformer-Rectifier (TR) units used in the aircraft EPS are not used in the orbital

missions, but remain in the spacecraft EPS for ferry missions. The orbiter ferry

mission is accomplished by using the main dc distribution system to provide powei to

much of the same equipment used in entry and landing phases of the orbital mission.

To conserve the available operating life of the fuel cells, the ac generators on the APUs

are used to supply energy to the TRs which convert ac to de and supply the main dc

power distribution system. The APUs are running daring the ferry mission to provide

hydraulic power and to drive the ac generator for jet engine fuel booster pump operation.

Use of inverters, power distribution units, and buses is the same as in the aircraft

EPS. The interfaces with hardwired displays and controls and with the data manage-

ment subsystem are increased to include the fuel cells and cryogenic storage system.

2.2.1.3.4 EPS Equipment Selections. Alternate approaches and rationale for

selection of major EPS equipment are summarized in Table 2.2-11.

Fuel Cell. A new design fuel cell was selected over the startup of the 1.4 kW Apollo

fuel cell module program. Atiimilar cost between the two candidates, a new low cost-

minimum technology 2000-hr-life, 8-kW fuel cell module can be developed. The fuel

cell characteristics are shown in Table 2. 2-12.
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Table 2.2-11

EPS EQUIPMENT ALTERNATE APPROACHES AND SELECTION

CANDIDATES RATIONALE

APOLLO FUEL CELLS COST OF PROGRAM TO START UP APOLLO
SIMI LAR TO DEVELOPMENT OF LARGER MODULE
DESIGN

APOLLO REACTANT TANKS COST OF INDIVIDUAL TANKS SIMILAR BUT FEWER

f:AAP REACTANT TANKS] OF THE LARGER AAP DESIGN ARE REQUIRED

400 Hz STATIC INVERTERS, 115 VAC 30 POWER DESIRED FOR LIGHTER MOTORS AND
EXISTING CRYOGEN STORAGE SYSTEMS. LARGE

13- APOLLO - 1250 VA VA MODULE DESIRED, PARTICUIARLY WITH NO
34 PERSHING - 500 VA PARALLEL OPERATION CAPABILITY; SPACE-
l L-IOll1 - 750 VA QUALIFIED FOR APOLLO

TRANSFORMER-RECTIFIERS (28V) LOW WEIGHT ( I !.8) AND BUILT TO MILITARY
LARGE NO. OF AIRCRAFT AIR-COOLED DESIGN SPECIFICATIONS

200-AMP -P3C DESIGN

OIL-COOLED BRUSHLESS AC GENERATORS 20 KVA MODULE SIZE DESIRED

[MODIFIED S-3A - 0 KVA
4QN 60 - 75 KVA (S-3A)
288-282-2 - 60 KVA (F-14)

Table 2.2-12

FUEL CELL SYSTEM CIARACTERISTICS

S- r iptio n Data

Type Capillary matrix, modified Bacon cell

Desigh Life (hr) 2000

Continuous Power Rating (kW) 8

Voltage at 8 kW (Vdc) 30

Reactants Oxygen and hydrogen

Number of Cell Sections 32

Cooling Mode .Fuel cell liquid loop and HX in vehicle
%< liquid loop

Operating Pressure (psia) 60

Operating Temperature (oF) 160 to 200

Dimensions (in.) 15 x 15 x 36 (4.7 ft3 )

Voltage Regulation (2 to 14 kW) . 12 percent

Module Weight (lb) 320
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Cryvogenic Reactant Storage. Apollo Applicationds Program (AAP) reactant tanks were

selected over the Apollo tanks for their larger capacity (55 lb H2 vs 28 lb and 456 lb 02

vs 320 lb) and the fewer required tanks to provide desired capacity. The status of

the discontinued AAP tank program and costs to provide a minimum technology design

are still being reviewed with the vendor to support this selection or indicate another

choice. The reactant storage system is described in Table 2.2-13.

Static Inverter. The Apollo three-phase inverter was selected for conditioned 400 Hz,

115 Vac power because of its large module power, 1250 Vac. The three-phase power

is desired to be compatible with light three-phase motors for the cryogen storage and

the fuel module systems. Separate single-phase and three-phase inverter equipment is

not desirable from a shuttle simplicity standpoint. Three-phase inverter operation in

parallel is not possible with existing equipment, so that a given inverter ac bus can only

be powered by one inverter at a time; this results in a large module size requirement

with the present using equipment selections. The Apollo inverter has cold plate cooling

and has been qualified for space. The inverter ac power requirement to be provided is

shown in Fig. 2.2-23.

Table 2.2-13

FUEL CELL REACTANT STORAGE DATA - TWO TANK SETS

Specific Reactant Consumption (SRC) (lb/kW-hr) 0.85

0 2 Required for ECLS (Ib) 64

Fuel Cell Energy Required (7-Day Mission With Payload) (kW-hr) 1191

112 Required for Power (Ib)- 112.0

02 Required for Power + ECLS (64 lb) (lb) 959.6

Additional li2 Required for Fail Safe* (lb) 7.0

Additional 02 Required for Fail Safe (Ib) 59.4

Available 112 Required in One Tank (lb) 59.5

Available 02 Required in One Tank (Ib) 509.5

H2 Available in 39 in. O.D. Tank (lb) 53.5

02 Available in 33 in. O.D. Tank (lb) 468

Allowed Payload Operation Time at 3 kW Average Power With

Selected Tanks (hr) 120

Fuel Cell Energy Pr 6ided (kW-hr) 1062

Weight of if 2 Loaded, Total (lb) 111

Weight of 0O Loaded, Total (ib) 936

Weight of 112 Tanks (Empty) (2 each) 296

Weight of 02 Tanks (Empty) (2 each) 406

012 br in orbit plus deorbit and landing
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CHECKOUT AND DOCKING

S2400
LAUNCH & APPROACH

ASCENT AND LANDING

T2000 - -0

ORBIT

POST LNDING

0 .0 2.0 3. 165 L 67 168 169

TIME - (H-
DO5617

Fig. 2.2-23 User Inverter AC Requirements - 040A Orbiter

Transformer-Rectifiers. A large number of TR unit designs exist for air-cooled,

aircraft operation. The P3C 200-amp unit was selected because it has low weight

(18 lb), has its own fan, and is built to military specifications. The TR units can be

operated in parallel. These units require installation in an earth atmosphere environ-

ment in the orbiter. The characteristics of this unit are shown in Table 2.2-14.

AC Generators. A 40 kva spray oil-cooled brushless generator was selected to provide

environment free operation at as close as possible to the desired 20 kva module size.

This unit has not yet been flown, but six units have been built and tested by the vendor.

The design is based on the 60/75 kva S-3A unit. The generator requires the APU gear

box to provide the drive-end bearing and cooling oil.

Generator Control Unit GCU. Several aircraft generator control units are available

for use with the orbiter. The design used in the S-3A was selected for compatibilitv

with the selected ac generator. It is powered by the dc bus. One GCU is used with c:ch

generator. The GCUs require installation in an earth atmosphere environment in the

orbiter .
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Table 2.2-14

TRANSFORMER-RECTIFIER CHARACTERISTICS

Manufacturer Wagner Electric Co.

Model No. 28VS200Y

Input - ac

Voltage 195 to 210 Vac

Current - Full Load 17 amp

Frequency 380 to 420 Iiz

Phase 3-phase, 4-wire

Output - de

Voltage - Nominal 28 Volts

Current 200 amp

Ripple 1. 5 percent RMS

Overload 250 percent for 1 minute

Efficiency 85 percent mrinimum

Power Factor 95 percent

Cooling Integral fan

Size 11 in. x 6 in. x 7 in.

Weight 18 lb

Transformer, Primary Wye

Transformer, Secondary Delta-wye

Rectifiers Silicon diode

Power Cabling. Aluminum cabling will be used between the fuel cells and the main dc

power distribution unit and between the dc ground power receptacle and the main dc

power distribution unit. Round wire copper cabling with Kapton insulation will be used

elsewhere for power distribution.

Power Switching. Circuit breakers and switches will be located in the cabin atmosphere

to control most of the power to individual users. Hermetically sealed contactors will be

used to switch major EPS components on and off line. Remote controlled circuit breakers

are proposed for dc and generator ac bus protection in the aft portion of the orbiter.

Environmental design problems'remain to be solved for conventional circuit-breakers;

solid state devices will be used where possible.

2.2. 1.3.5 Electrical Power System Redundancy. The level of redundancy proposed

for the Mark I orbiter is shown in Table 2.2-15. The fuel cells, ac generators, generator

control units, and transformer-rectifiers provide fail operational/fail safe capability.

The cryogenic tanks, static inverters, and distribution buses provide fail safe capability ornly.
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Table 2.2-15

ELECTRICAL POWER SUBSYSTEM REDUNDANCY

NO. REQ'D NO.
- ITEM FAIL SAFE SELECTED RATIONALE

FUEL CELLS (8 KW) 2 3 LOWEST RELIABILITY UNIT IN EPS
AND HIGHEST RISK OF CURTAILED
MISSION-LIMITED DATA

02 REACTANT TANK 2 2 HIGH RELIABILITY -EACH TANK
HAS FAIL-SAFE RESERVE LOADED -

H2 REACTANT TANK 2 2 TANKS ARE EXPENSIVE

30 STATIC INVERTERS 4 4 FAIL-SAFE - ACCEPTABLE WITH
(CENTRAL) - 1250 VA LIMITED AVAILABLE INVERTER

MODULE SIZES

AC GENERATORS AND 2 3 3APUs AVAILABLE - COST FOR
GCUs - 40 KVA FOIFS NOT SIGNIFICANT

TRANSFORMER RECTIFIERS 2 3 FOIFS SOURCE OF DC POWER
(200AMPS)HORIZONTAL TEST POWER DESIRABLE
AND FERRY FLIGHT ONLY)

AC AND DC BUSES 2 2 TWO BUSES PROVIDE HIGH
RELIABILITY

035710

Cryogenic Tanks. Sufficient reserve reactants are loaded in each 02 and H2 tank

to provide sufficient energy for crew safety, should one tank fail. The high reliability

of the tank systems plus the high cost of these systems justifies the fail safe design

rather than FO/FS.

Static Inverters. Four static three-phase inverters are used because available

module sizes are smaller than desired for the inverter ac power requirements. Since

available three-phase inverters cannot be operated in parallel, the load is divided

between two sets of buses. Each set is supplied by one of two inverters. If one

inverter in a set fails the other inverter is placed in operation to provide fail safe

capability. This mode of operation was selected over increased weight and cost of six

units for FO/FS design.

2.2-54

LOCKHEED MISSILES & SPACE COMPANY



LMSC -A995931
Vol II, Pt 4

Power Distribution Buses. Two redundant buses each are provided for dc, inverter

ac, and generator ac distribution for fail safe operation, due to the high reliability

of the buses and the high weight of bus systems.

The location and number of the major EPS components in the Mark I orbiter are shown

in Fig. 2.2-24. The ac generators are located on the APUs. The APUs are located

aft in the orbiter to be near the hydraulic power users. The aircraft type generator

control units (GCU) are located in the forward controlled environment area as are the

aircraft type transformer-rectifiers. The GCUs are low-power solid-state devices

and require little cooling. The transformer-rectifier units will require significant

air cooling in horizontal flight. The five dc distribution units are located to serve

centers of significant power use. The physically separated dc buses are routed to

serve each dc distribution center.

The electrical power system weights are summarized in Table 2.2-16.

- ~ -. ~ AC GENERATORS (3)

INVERTER
AC DISTRIBUTION

UNIT

GE ERATOR 3
CONTROL '

-AC DISTRIBUTION UNIT
TRANSFOMER , 2
RECTIFIERs (3) ' 0 '

DC POWER DISTRIBUTION UNIT (5)
INVERTERS (4)

MAIN DC DISTRIBUTION UNIT

-FUEL CELLS (3)

Fig. 2.2-24 Electric Power Generation and Distribution Configuration -
040A Orbiter
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Table 2.2-16

MARK I ORBITER AVIONICS WEIGHTS SUMMARY

O Operational
0 Subsystem FHF Wt. (ib) FVF Man Wt (lb) FVF Unman Wt (1b) Wt (ib)

Guidance, Navigation 1119 2018 2018 2275
and Controls

Communication and 316 436 436 531
Navigation Aids

? Electrical Power Generation, 2332 3696 3696 3696
Control and Distribution

SDisplays and Controls ° 751 1049 1049 717

O Data Management 555 665 665 665

0 Instrumentation 493 664 693 376
0

T Sub-Total 5566 8528 8528 8260

< Installation (10) 556 853 853 826

TOTAL 6122 9381 9381 9086

o
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2.2.1.4 Controls and Displays. The objective of the control and display (C&D)

system is to significantly reduce pilot workloads, as shown by Figs. 2.2-25 and 2.2-26.

Three alternate concepts were developed (Table 2.2-17); the baseline concept

(Alternate C) is described in this paragraph. This selected baseline system offers

a Space Shuttle configuration that is flyable by a two-man crew in the operational

phase and one-man emergency modes. Also, the configuration permits measurable

reduction of the total instrument panel area and eliminates the requirement for a

third crewman.

The other two alternatives (A and B) are discussed briefly in following paragraphs

and are presented in more detail in Part D, Appendixes 2 and 3. Each alternative

was evaluated against the basic data management system, flight dock volume, crew

size and complement, degree of onboard autonomy, inflight checkout, redundancy,

power, ground support requirements, operability, and developmental requirements.

VEHICLE
CONF IGLRATION
DEFINITION
EG 04A0A

MISSION POSTULATED MISSION SYSTEM SUBSYSTEM FLIGHT CREW
MODEL MISSION FUNCTION FUNCTIONS AND FUNCTIONS AND SUBSYSTEM

EEQUIREMENTS DEFINITION [EQUIREMENTS EQUIREMENTS IFUNCTIONS AND
DEFINITION DEFINITION REQUIR.MENTS

DEFINITION

, ATMOS/SPACE
o PtLOT/VEH MGMT
o OTHER

CREW/AVIONIC DISPLAY AND DISPLAY AND D&C ALLOCATION PERFORM PEPAE SLAIT
CONCEPT CONTR

O L  
CONTO

L  BY SUBSYSTEM TIADES LOCK DlA. RECO 'EN.
DEVELOPMENT CANDIDATE IDENTIFICACT D/C LAYO. AND PREPARE

CONCEPT AND FO **,,AT$ FINAL REFOAt
DEVELOPMNT

o PIOTAGE o SEPARATED o AIC.CRAFT o G&N o CREW NO.
o FLIGHT STATITN o COMINED Eo WPA $CDF_ FLIGHT CONTIOL D O TYP S
o D&C . o iOQ AWA WMAL oc FROP o CONFIO 1ATIONI

OLOCK I o ELECTIC o EQUI ENT
DLOCLr otCo/L

o YEH SYl

Fig. 2.2-25 Control and Display Functional Approach
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OE Table 2.2-17

CANDIDATE CONTROL AND DISPLAY AVIONIC CONCEPTS

o ADVANCED AIRCRAFT AND SPACECRAFT TYPE INSTRUMENTS
o INCREASED DATA BUS AND COMPUTER CAPABILITYo CATHODE RAY TUBE RANDOM ACCESS DATA

o AMALGAMATED CONTROL AND DISPLAY CONFIGURATION
o DEDICATED CONTROL AND DISPLAY MANUAL MODE BACKUP

ALTERNATE A SEPARATE AIRCRAFT AND SPACECRAFT CONTROL AND DISPLAY STATIONS
o SEPARATE STATIONS

o SAME STATION - SEPARATE PANELS
o SAME STATION - SEPARATE SUBPANELS
o AIRCRAFT/SPACECRAFT OFF-SHELF INSTRUMENTSo NO DATA BUS, MINIMUM COMPUTER CAPABIUTY
o DEDICATED CONTROLS AND DISPLAYS

ALTERNATE 0 COMBINED AIRCRAFT AND SPACECRAFT CONTROL AND DISPLAY STATIONS

cMIX OF AIRCRAFT AND SPACECRAFT CONTROLS AND DISPLAYS

IN STATIONo AIRCRAFT/SPACECRAFT OFF-SHELF INSTRUMENTS
o SOME DATA BUS AND COMPUTER CAPABILITY
o DEDICATED CONTROL/DISPLAY MANUAL MODE BACK UP
o SOME DUAL BUSDE INSTRUMENT USAGE/CAPABILITY
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2.2. 1.4. 1 Rejected Alternate Concepts. The Alternate A concept for separate aircraft

and spacecraft C&D stations employs (1) off-the-shelf large aircraft and (2) Apollo

LM/CM C&D instruments (Fig. 2.2-27) in a dedicated system approach without

programmable display capabilities. This requires increased C&D instruments and

associated greater panel area and results in the highest amount of pilot workload of

the three alternates considered.

The combined aircraft/spacecraft C&D station approach (Alternate B) is similar to

the Alternate A concept but includes a malfunction, detection, analysis, and recording

(MADAR) onboard checkout capability, as on the C-5A aircraft, with dedicated controls

and displays (Fig. 2.2-28). All critical components are duplicated and hardwired;

a mixture of off-the-shelf aircraft and spacecraft instruments are used for the C&D

panel. This approach significantly reduces (over Alternate A) the quantity of dedicated

caution and warning indicators needed for pilotage, panel area requirements, and the

pilot worldoad level, but is still less desirable than the Alternate C approach selected

as baseline.

CAND DDICATED 0 AND C - OTF-SHELF
o D AND C StELCTED FOR BOTH FLIGHT REGlM~SD MIX . AINTAINAELE - SUI ODULAR

HARDWIRE TO CRITICAL A/C D AN C

OPEPAS', FROM EITHER SEATAC AND A/C AND PILOT ACCEPTANCE

/C MIX S/C MIX DUPLICATE 0/C CAPABILITYL .Fso HARDWIRE TOCRITICAL S/C D AND C

C AND ND OUT-THE-WINDOW VIEWING
~ 

DEDNTICAL LEFT/RIGHT PANELS
X CRT/KEYOARD FOP. NONCRITICAL TASK

0 AND C ARRANGEMENT FLIGHT SPECIFIC

o IN-FLIGHT "TEST' CHECK
A/C AN o BOME-ON"OARD C/O

MIX C MIX o REDCED CREW TASK LOADING
o ADEQUATE D/C YOLLnUE

DOS853

Fig. 2.2-27 Alternate A -- Separated Control and Display Approach
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AC AND o DDICAT[D D AND C - OFF-SHELF
0 D AND C SELECTED FO B011H FLIGHIT UPG41S

, M I0X M IX o AtNTAINASLE - SUIJODUIAt
o HIARDWIRf TO CRIIICAL A/C DAND C

o OPEABLE FROM UITHR[ SEAT
A/C AND A/C AD PILOT ACC PTANCE
/C MIX /C MX IICAI DiC CAPABILITY

o IHADWIRA 11 CRITICAL /C D AND C

A/C AD AOUTI-II-WINDOW VIWINGA/C Ato4011 AC tD IDETITCAL [[FT/NGHT PANELS
~ MIX /C MX 0 CRT/KEYb+ RD FOR NONCRITICAL TASK

o 0 AND C ARRANGEMENT FLIGHT SPECIFIC

o IN-FLIGHT "TfST' CHECK
A/C ND A/C AND I SOME-ON<'OABD C/O
SMI S/C MiX 0 R[DLrED CREW TASK LOADING

o ADEQUATE D/C VOLLME

DOSS5O

Fig. 2.2-28 Alternate B - Combined Control and Display Approach

2.2.1.4.2 Baseline (Alternate C) Approach. The selected baseline concept provides

programmable controls and displays (Fig. 2.2-29) and the increased flexibility for

instrument use. Panel area is considerably less than for the other two concepts, and

the third crew member (System Flight Test Engineer) is not required for flight opera-

tions. Also, the panel area and crew-size reduction reduces the total dedicated volume

and number of panels within the flight-deck area. The baseline configuration features,

resulting in selection over the other two candidates, include the following:

c Flown by a two-man crew in the operations phase; one-man in emergency

modes

o Measurably reduced total instrument panel area and requirement for a

third crewman

o Decxeased C&D instrument weight

& Permitted onbo ard checkout, fault isolation, and redundancy management

(C OFIRTM)

2.2-60



LMSC -A 995931
Vol 11, Pt 4

S~o0 DEDICATED D/C
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o DUPLICATED 0 AND C

S0 CD5 n!0 o OPERABLE FROM EITHIER SEAT
SOUT-THIE-WNDOW VIEWING
S'ROGRAMA I D ANDC

o MISSION PEGIME FUGH1 SPECIFIC 0 AND C

DUAL USE OF Wl NY D AND C
o EDUCED PILOT LOADING

7 0
SYSTEMS ENGt -4
STATION AISODED

D05848

Fig. 2.2-29 Programmable Control and Display Approach

o Simplified integration with the basic S-3A data management system

o Achieved an FO-FS redundancy for crew safety

o Permitted excellent utilization of computer capability for C&D programmable

functions

o Utilized nearly all instruments as totally off-shelf items

a Provided extensive inflight and growth flexibility for "softly" defined

missions

o Had compatibility with data obtained in NASA-sponsored Space Shuttle simulation

programs at LMSC

The baseline concept, on the basis of using off-the-shelf S-3A aircraft data manage-

ment system hardware, is considered to have minimal risk; particularly since all

but two major C&D instruments are flight-proven. Spacecraft instruments from the

2.2-61

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A99593 1
Vol 1I, Pt 4

Apollo LM/CM can be employed and also are flight-proven. Aircraft instrumOnts are

readily available from the L-1011, S-3A, C-5A, YF-12, and other existing military

and commercial systems.

Cathode ray tubes (CRTs), which are fully operational on the S-3A, employ alpha-

numeric, pictorial, diagram, chart, map, procedural, real-world image, etc.

to communicate data to the pilot. The flight management CRT data are used for the

first time as a real inflight information tool. These data will be available four years

ahead of the first orbiter horizontal flight test date. Data entry keyboards (e.g.,

Apollo, C-5A, and S-3A) provide a common inflight device with extensive software

programs and routines. Thus, with ground test, inflight test, and operation flight

experience gained in previous developments, the level of confidence and availability

of these instruments can be assured and C&D subsystem equipment requirements can

be met totally within the state-of-the-art.
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2.2.1.4.3 Requirements for the Control and Display Subsystem - Mark I. The C&D

development approach necessitates generation of basic subsystem drivers- and

requirements. Table 2.2-18 presents the initial Mark I Orbiter C&D subsystem

drivers; of these, only flight-crew ejection for the test/verification flights remain

"soft" because of the lack of specifications in the test program. (Note - if intact

abort is imposed on the test/operations program, crew ejection will not be required.)

Additional Mark I requirements are listed in Table 2.2-19.

The basic Mark I C&D subsystem with subsequent growth to Mark II will be pilotable

by a two-man flight crew during all flight regimes and flyable by one crewman under

emergency conditions. For this subsystem, the basic underlying requirement is

the development of an approach and ultimately the hardware to permit sufficient

capability and redundancy for providing safe crew return and general mission success.

Additional requirements for Mark II are presented in subsequent paragraphs.

Table 2.2-18

MARK I AVIONIC CONTROL AND DISPLAY SUBSYSTEM
DEVELOPMENT DRIVERS

FLT TEST OPS
1. FLYABLE FROM EITHER SEAT X X
2. MISSION CRITICAL C&D HARDWIRED X X
3. NO PILOTICOPILOT TRANSLATION IN: X X

ATMOSPHERE EXO-ATMOS PHERE

e TAKE-OFF o FINAL COUNT-DOWN
o FINAL APPROACH o LAUNCH AND ORBIT INSERTION
o LANDING o TERMINAL RENDEZVOUS AND DOCKING
o ROLL-OUT o RE-ENTRY

4. DUPLICATE MISSION CRITICAL C&D INSTRUMENTS X X
5. CONFIGURATION GROWTH POTENTIAL TO BLOCK II AVIONICS X

6. MODULAR DESIGN X X
7. INITIAL REQT -ATMOS -U(&D: PROVISION FOR SPACE C&D X

8. OUT-THE-WINDOW VISION REQUIRED (ATMOS); DESIRED (EXO-ATMOS) X X

9. FLIGHT CREW EJECTION (HORZ & VERTICAL TEST) X

10. USE OF OFF-SHELF C&D INSTRUMENTS X X

11. CREWMAN SIRAPPED IN SEAT; HIGH G LOADS PROHIBIT EXTENSIVE
ACCURAW A",RM/HAND MOVEMENT X X
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Table 2.2-19

MARK I CONTROL AND DISPLAY REQUIREMENTS

1. Flight Control

o Manual override of all flight critical functions (crew safety) and modes

o Automated functions to the degree required to meet safety, performance

accuracies, energy management economy, reaction time, etc.

o Selected automatic or manual control by flight crew for nominal or non-nominal

flight modes or contingencies

o Ability of shifting flight control authority from flight deck to other stations for

on-orbit operations (e. g., docking or payload handling)

o Selected.manual or automatic functioning of MAINS, OMS, RCS, APU, AND ABES

by crew

o Selected manual or automatic vehicle configuration control by crew

o Selected autopilot/land flight mode and regain of manual control at any

time by crew

2. Flight Data Presentation

o Flight management information automatically programmed by mission regime

o Anomalies automatically called to the crew's attention on C&W indicators and,

then, more definitive data presented selectively elsewhere

o Data not mission-regime specific not presented but capable of being requested

by the crew

o Routine and recurring data not mission-critical/specific located out of the

critical visual cone or provided in form for callup

o All major subsystems (10 to 12) with dedicated annunciators for C&W

E Mission-critical display deJa presentable in summary form on other

than dedicated displays

o Critical flight information always within the easy scan and forward-

viewing visual envelope of the pilot/copilot
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Table 2.2-19 (Cont'd)

3. Operations Control

o. Vehicle configuration control manual backup provided the crew

o Manual control to all crew and flight safety functions provided

o Noncritical repetitive tasks, resulting in crew functional constraints,

automated with consideration for keyboard override to degree required

o Any vehicle function to the subsystem level enabled or inhibited by flight crew

o Normal subsystem functions need not be continuously controlled by the crew

o Flight control during on-orbit operations, relative to rendezvous/docking

and payload functions, may be remoted depending on vehicle configuration/layout

o Critical function safety interlock provided to prevent accidental operation

4. Crew Caution and Warning

o Malfunctions, deviations, or out-of-tolerance conditions automatically displayed

to the crew, thus eliminating crew dedicated/repetitious checkout tasks

o Major subsystem status available to the crew for both inflight and ground operations

o Limited but critical booster status (and vice-versa) presented to the orbiter

crew from crew boarding through launch and staging

o All major subsystem malfunctions, deviations, or out-of-tolerance conditions

presented to crew (those influencing crew safety or mission success)

o Supplementary diagnostic data and control capability to isolate the problem,

ascertain its nature and impact, and effect appropriate action provided by the crew

o Data provided permitting the crew to compare current parameters with discrete

range limits for purposes of go versus no-go decision making

o Initial presentation of major subsystem malfunction(s) or out-of-tolerance

condition(s) provided for in the direct forward instrument view of the crew

o Major system status provided through dedicated C&W annunciators, located

just off-center of the main center-line of the pilot's head axis
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2.2.1.4.4 Control and Display Concept Development - Mark I.

Definition of Pilot Functions and Identification of Controls and Displays (C&D). Con-

current with development of basic approaches (Concepts A, B, and C), significant

effort was allocated to delineate gross pilot functions and relevant controls and

displays. Table 2.2-20 is an example of data developed to specify gross functions for

GN&C for space and atmospheric flight regimes. Also, C&D applicable from the

Apollo CM/LlM are identified. Where instruments are unavailable from either

spacecraft/aircraft, an indication "new" is made to identify requirements from

other inventories. Table 2.2-21 presents an example of gross spacecraft functions

and the identification of related controls and displays from Gemini and Apollo CM/LM.

This effort provides the "shopping list" for allocation of C&D made in the development

of the data sheets represented in Table 2.2-19.

The three alternate approaches are compared against off-shelf control and display

instruments and candidate C&D mode identification and selection performed.

Figures 2.2-30 and 2.2-31 present both C&D modes and the candidate instruments

considered for each. All items indicated are either off-shelf or currently under

development for viable NASA or military contracts. These lists provide the

aggregate from which the LMSC control and display instrument baseline was selected.

Additionally, the operational L-1011 autopilot/land C&D instrument panels are

incorporated, thereby, maintaining the basic off-shelf approach. The only instruments

that can be positively identified as needing fairly major modification are the following:

o Attitude director indicator - modify for atmosphere and space use

o Translation controller - modify to operate alternate engines

o Attitude controller - modify by adding disable yaw switch

o Aero-surface indicator - modify for elevon and rudder surfaces only

Minor control and display modifications required are: (1) labels/legends, (2) scales,

(3) lamp colors, and (4) mounting mechanisms.

From an examination of postulated mission requirements and by identification of gross

crew functions, candidate controls and displays, and mix of instruments, the evolution
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CONTROL MODES
CONTROL TECHNIQUES 0 0

FLIGHT CONTROL

o LFFT HAND - 3 AXIS TRANS: FORE-AFT, UP-DOWN, LEFT-RT o
o RIGHT HAND - 3 AXIS ROTAT: PITCH, ROLL, AND YAW 0
a CENTER AND LEFT CONSOLES -ABES CONTROL I

INFORMATION INSERTION AND CALL-UP

o MISSION DATA INSERTION ol a
o SUBSYSTEM DIAGNOSTIC I
a PROCEDURAL AND DATA CALL-UP a
o FUNCTION SPECIFIC INSERTION o0 0

MODE CONTROL

o MISSION PHASE SELECT 0 1
o FLIGHT CONTROLS I I I I o o e
o COMMUNICATION TUNING AND SELECT 0
o DISPLAY SELECTION AND OPERATION I
o STRUCTURE/CONFIGURATION CONTROL I I I o
o SUBSYSTEM CONTROL I I a 0

CAUTION AND WARNING

o DISABLE I I
o CALL-UP o i I
o EXTINGUISH I I I

D05645

Fig. 2.2-30 Control MIode Identification and Control Selection

DISPLAY MODES DISPLAY TECHNIQUES / / .

--------- 1 --- -_ -- - -

FLYING DISPLAYS

o FLIGHT DIRECTOR COMMANDS AND STEERING o o I
o VEHICLE FLIGHT SITUATION oi I I
o ADVISORY REDLINES, LIMITS AND EVENTS I I

SITUATION DISPLAYS

o MISSION PROFILE, PROGRESS AND EVENTS I I I
o ENERGY MANAGEMENT I II o

STATUS DISPLAYS

o SUBSYSTEM OPERATION AND PERFORMANCE oi
o ON-BOARD C/O I o 0o o I
o ABORT STATUS I I I I

ASSIST DISPLAYS

o DATA CALL-UP I I I i I
o PROCEDURE SELECT I I I I
a MISSION EVENT SEQUENCING 0

CAUTION AND WARNING

o MASTER CAUTION AND WARNING o
o ABORT WARNING I I I I 0
o M4JOR SYSTEM STATUS o

D056
4

Fig. 2.2-31 Display Mode Identification and Display Selection
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Evolutionary Approach to Programmable Controls and Displays. Recognition

of the need for reduced pilot workload, lesser dedicated C&D panel area, and

reduced flight-deck volume indicate the necessity to consider programmable

controls and displays. Therefore, the approach conceived is for a C&D concept,

which logically and systematically evolves from the purely dedicated (Alternate A)

concept to the highly programmable baseline (Alternate C) concept. Figure 2.2-32

illustrates the evolutionary process. Appropriate to this process is the question of

"why the transition from hardwired (dedicated) to programmable C&D" - which

question is addressed in Table 2.2-22. Consideration is given then to programmable

C&D and to development of a logic decision thread for their application in the basic

subsystem - considering such elements as (1) crew safety and mission success, (2)

critical phases and events, (3) frequency and concurrency of use, (4) mission

regime assignment, (5) decision rules, and (6) fail conditions and redundancy.

Figure 2.2-33 illustrates this decision thread for the selected baseline in Mark I.

BASIC USER INCREASED
CAPABILITIES ORIENTATION CAPABILITIES

MARK I AVIONICS DECISION RULES MARK II AVIONICS

o DEDICATED C/D o WHAT TO RETAIN ON o ESSENTIAL DEDICATED C/D
o NO DATA BUS HARDWIRES AND WHY o MULTI-ROLE ACFT/SPACECRAFT
o MINIMUM COMPUTER o WHAT TO PROGRAM MIX
o OFF-SHELF TERMINAL AND HOW e DATA BUS/COMPUTER

EQUIPMENT o ACFT/SPACECRAFT D/C o RANDOM ACCESS C/D
o ACFT/SPACECRAFT INTEGRATION OPPORTUNITIES THROUGH CRT's, KEYBOARD

o CREW SAFETY o STATE-OF-ART DEVICES
o MISSION SUCCESS o PROGRAMMABLE

(ALTERNATE A) (ALTERNATE C)

o IMPROVED CONCEPTS
AND TECHNOLOGY

o GROWTH POTENTIAL
o ADVANCED MISSIONS

CREW PREFERENCES

DO5614

Fig. 2.2-32 Evolution of Programmable Control/Display Concept
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Table 2.2-22

DEDICATED VS PROGRAMMABLE CONTROLS AND DISPLAYS

Q WHY TRANSITION FROM HARDWI RED TO PROGRAMMABLE?

DEDICATED

A 1. HIGH WEIGHT/POWER/PANEL SPACE REQUIREMENTS

2. INFLEXIBLE/NOT ADAPTABLE TO MISSION PHASE

3. DATA NOT ESSENTIAL TO MISSION PHASE-OVERLOADS CREW
4. C/D EXTEND BEYOND PRIMARY VISUAL/MANUAL ENVELOPE

5. 3RD CREWMAN TO MANAGE SUBSYSTEMS

6. MAINTENANCE/REPAIR/LOGISTICS MORE COMPLEX

PROGRAMMABLE

A 1. FLEXIBLE/ESSENTIAL DISPLAYS ALWAYS IN PRIME SPACE

2. LESS PANEL SPACE/LOWER POWER AND WEIGHT

3. BETTER ALLOCATION OF WORKLOAD/REDUCTION IN CREW SIZE

4. GREATER GROWTH POTENTIAL

DO68AA

DECISION

MISSION SUCCESS

CREW SAFETY

ALTERNATE B I

CONT.OLLED PlASE NO OF USE Lo' OTHER
oPARAMETERS + CRITICAL . CONCURRIENCY D IO o II BY CRIT EVENTDISPLAYED I EVENT OF USE II By E

YE IIGH Fr/o F/O

DEDICATED
L, AiRCPAF/SPACECAF

L DEDICATED LAUNCWASCENT NO. OF PHASES
CONTROL TAKE-OFF NO. OF CRITICAL WHAT
AND APORT EV\'ENTS Wn y ALTERNATE CDISPAy TERM AENDE'/DOCE SE[OUECES HOW PPOCG AMA0BE
FUNCTIONS DEORB!I INTERFACES AMONO H IERE C/D MIX

LANDING SUSYSt MS

Fig. 2.2-33 Dedicated Vs Programmable Control/Disp!ay Decision Thread
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and decision logic thread are traced through to a programmable concept, with sufficient

redundancy to provide the level identified for crew safety. This logic thread is illus-

trated in Fig. 2.2-34. From this effort, dedicated versus programmable C&D decision

rules are generated as basic to the development of the control and display subsystem

(Table 2.2-23).

Control and Display Baseline Description. A pictorial diagram of the baseline

(Alternate C) is presented in Fig. 2.2-35. Obviously, not all C&D are discretely

identified, although major categories are included. The key to the C&D subsystem is

the utilization.of the "off-shelf" S-3A basic data management system and its inherently

flexible potential (para. 2.1. 5). Shown in Fig. 2.2-35 is the hardwire and program-

mable interface for C&D. All flight-critical (crew safety and mission success) controls

and displays are hardwired and, as shown in Fig. 2.2-36 (main instrument panel),

certain of these are duplicated (one set at the pilot's station and one set at the copilot's

station) for redundancy. Figure 2.2-37 illustrates the eyebrow/overhead panel located

in the overhead between the crew.

e Basic F 'ight Control and Displays - Crew Safety and Mission- Success. As the

C&D subsystem definition developed, it was necessary to determine those

instruments critical to crew safety and mission success and which need to be

hardwired and duplicated. (See Table 2.2-24.)

o Multifunction Display Units (MDU). Key to the programmable information

presentation approach is the incorporation of three multifunction display units

(MDUs incorporating CRTs: one each for the pilot and copilot and one located

between for common sharing. The pilot and copilot MDUs are mission-regime

sequenced so that only pertinent data for a particular mission phase are presented

unless overriden by the crew.

Representative data presented~' n the three MDUs is indicated in Table 2.2-25. Infor-

mation can be switched to any unit. Typical types of data presented are: (1) pictorial

or real image, (2) alphanumeric, (3) graphic, (4) tabular, (5) map, (6) procedural,

(7) caution and wa.rning, (8) schematic, and (9) symbology. Three modes for grouping

data on the MDUs are selected as illustrated in Table 2.2-26. Mission-phase and single-

purpose display format examples are presented in Figs. 2.2-38 and 2.2-39a and b.
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Fig. 2.2-34 Evolution of Programmable Controls and Displays

Table 2.2-23

DEDICATED VS PROGRAMYALBLE CONTROL/DISPLAY DECISION RULES

DECISION RULE DECISION
PRIORITY (C/D EXAMPLES IN PARENTHESES BELOW) DEDICATED PROGRAAED

I . ULTIMATE BACKUP C/D HARDWARE (LAST REDUNDANCY) X
FOR ESSENTIAL FUNCTIONS OF FLIGHT CONTROL,
G & N, PROPULSION, EPS, COMM. (FDAI, ALIiVERT
SPEED, AIRSPEED/MACH/o<, HSI)

2. ULTIMATE BACKUP C/D HARDWARE FOR MISSION X
COMPLETION (RANGE/LOS/RANGE RATE, RADAR
ALTIMETER, EMER 02 FLOW, ETC.)

3. CATASTROPHIC FAILURE, CRITICAL CONDITION, EMERGENCY x
DISPLAYS (ABORT, MASTER WARNING, CAUTION AND
WARNING ANNUNICATORS)

4. ANALOG/CONTINUOUSLY VARIABLE CONTROLS (ATTITUDE X
CONTROLLER, TDROTTLE CONTROLS, RUDDER/BRAKE
PEDALS, PO1ENTIOMETERS, ETC.)

5. MANUAL CONTROL FUNCTIONS REQUIRING IMMEDIATE X
RESPONSE TO CORRECT CONDITION OR AVERT HARDWARE
DAMAGE/CREW INJURY (ABES AND APU SHUTDOWN, RCS
QUAD DISABLE, EJECTION SEQ INITIATION)

6. FUNCTIONAL (OR INTEGRAL) CONTROLS FOR DEDICATED X
DISPLAYS (TEST, MODE SELECT, SCALE, PARAMETER ADJUST,
COMMAND SETIJJiG, ETC.)

7. VEHICLE CONFIGRjkATION C/D (POSITION OF AERODYNAMIC X
CONTROL SURFACE TRIM, SPEED BRAKES, DOORS OPEN, GEAR
AND ABE DEPLOYED, ETC.)

8. C/O PANELS FOR PACKAGED STATE-OF-THE-ART SUBSYSTEMS X
(MADAR, TACAN, ATC TRANSPONDER, UHF COMMUNICATIONS,
ETC.)

9. SINGLE MISSION PHASE OR CRITICAL EVENT MONIIORING X
(BOOSTER ATTITUDE RATE AND PROPULSION ABNOR.MALTIES
RENDEZVOUS/DOCKING)

10. ROUTINE MONITORING & RECONFIGURATION OF SUBSYSTEM X
(ECS, ELECT PWR DIST, PROPELLANT/PRESS PARAMETERS,
CROSSFEED)

iI. SIMULTANEOUS DISPLAY OF INFORM. REL. TO MISSION PHASE
12. MALFUNCTION ISOLATION IN PAPRLLEL V'1TH ON-BOARD C/O
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p;0
I. ENGINE FIRE CONTROL PANELS

O 2 O O 2. EC/LS GAS SUPPLY OVERRIDE VALVES
3. ELECT. PWR GENERATION AND DIST
4. ELFVON DISARLE
5. RI 1[, f R 01,AlI fQ 6. SA", PIll IT, AIS, AND TRIM EMER. CONTROLS
,1 ANIISIID CONIROLS
8, SENSOR HEAT CONTROLS
9. PFCS MON., RUDDER AND ELEVON EMER. CONTROLS

10. RUDDER LIMIIER
3 11. ENGINE START

12. APU ENGINE CONTROLS
13. CABIN LIGHTS
14. MISSION TIMER
15. EVENT TIMER

0O 5 17 I 16. EXTERIOR LIGHTS
0 _0- 17. GROrTH

18. GROVTH
S 8 12 19. GROWTHI

20. GROWTH

7 10

13 20 16

D05907

Fig. 2.2-37 Eyebrow/Overhead Panel

Table 2.2-24

BASIC DEDICATED FLIGHT CONTROLS AND DISPLAYS

o FLIGHT ATTITUDE DIRECTOR INDICATOr o FIRE CONTROL
o HORIZONTAL SITUATION INDICATOR o ABORT CONTROL/LAMP
o AIRSPEED (MACH) AND METER o MAJOR SYSTEM ANNUNCIATORS
o ALTITUDE, VERTICAL SPEED METER o BOOSTER SYSTEM STATUS ANNUNCIATORS
o PROPULSION/ENGINES METERS o AEROSURFACE POSITION INDICATOR
o THROTTLES - QUADS o RUDDER LIMITER
o ATTITUDE AND TRANSLATION CONTROLLERS o SPEED BRAKE
o RUDDER PEDALS o ELEVON CONTROLS
o COMMUNICATION PANEL o ABES CONTROLS
o INSTRUMENT LAMPS o LANDING/EMERGENCY CONTROLS
o EC/LS CONTROLS o ENGINE START - ABES AND APU
o ELECTRICAL POWER CONTROLS- o SAS, PITCH, AND TRIM EMERGENCY
o ANT;SKID CONTROLS CONTPOLS

o VEHICLE CONFIGURATION CONTROLS o MISSION AND EVENT TIMERS/CONTROLS

308428
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Table 2.2-25

TYPICAL ALLOCATION OF PROGRAM DATA TO PILOTAGE CRT DISPLAYS

PILOT CRT CENTER C T COPILOT CRT

I 1S5SION PHASE DATA I SUS~YSTEM STATU I wASSION PHASE DATA

q PREDICTED PERFORAANCE o KEY SIQSY TEM PARAMETERS

ENVELOPES RY SUSBSYSTEM 2 CITCAL EYETS

o FLIGHT REGIMES 2 StSYSTIM CONFIGUPATION

o COMPOSITE G&N SITUATION v WHICH HARDWARE ON LINE 3 MISSON FLANNING DATA

DISPLAY
o WHICH OPERATING MODES

" COMPOSITE CONFIGURATION IN MULTI-MODE SUBSYSTFMS 4 MSSION PRASE CHECKUSTS
DISPLAY o REAL-TIMEh RECONFIGLATION

2 CRITICAL EVENTS TALK-PACK

o HORIZONTAL FLIGHT 3 PEFLIGHT CHECKOUT P-RoCEDLfES

tTAKE-OFF (SPE[EDS, CONFIG,
PERFORM) 4 MASLFUNCTION ISOLATION IN

V LANDING (SPEEDS, ALT, RESPONSE 10 C&W INDICATION

CONFIG, RIATES) 3 POSTFUGHT CHECKOUT PROCEDL-ES

q VERTICAL FLIGHT

V LAUNCH (IGN, LIFTOFF, h
STAGE, BURN, DOOST)

V ASCENT (STAGE, IGN, FERF,
TAJ, SEP) PLOT CENTE COPILOT

V INSERT (TEJA, PERF, SYS
TPANSITION

v 'ENZ (TZRAJ, PEEF, SENSORS,
t&d0ES)

/ TERM R&D (ACQ, SENSORS, CRT DATA SWITCHING
TRAJ, MODES) POTENTLAL

IV RETRO/DEOR (GN, CON-
FIG, TIIERMAL)

o AORT

V/ MISSION PHASE

VSPECIFIC FAILL2E

/ SEQUENCED

V GROUND/RANGE SAFETY

Table 2.2-26
DO244

CRT DISPLAY PROGRAMMING APPROACH

THREE MODES OF GROUPING DATA FOR CRT DISPLAYS:

1. BY SUBSYSTEM

o GROUP AND DISPLAY SIS CONFIGURATION AND OPERATING PARAMETERS

o 'WALK THROUGH" THE SIS

o FOR S/S "MANAGEMENT," HANDLING CONTINGENCIES, MALFUNCTION ISOLATION
AND TROUBLE SHOOTING

2. BY MISSION PHASE AND CRITICAL EVENT

o DISPLAY "WHAT NEEDS TO BE USED"- SEVERAL DISPLAYS

o INTER-RELATED DATA FROM VARIOUS SUBSYSTEMS SIMULTANEOUSLY

o "ALWAYS USED" DISPLAYS/CONTROLS ALWAYS AVAILABLE - HARDWIRED

3. SINGLE-PURPOSE

o ONE TYPE OF DISPLAY OR INSTRUMENT AT A TIME

o FLY-TO ENVELOPE OF CO;MMAND EXECUTION

o CHECK LIST o BACKUP PROCEDURES
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YAW RATE
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Fig. 2.2-38 CRT Program,-- g By Mission Phase: Launch
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Multifunction display unit information is presented in consistent formats for either

crewman and always in subsystem groups for clarity and ease of information scan

and interpretation. Major system, subsystem, and "unique" data are available for

call-up through the pilot or copilot keyboards. Data switching among the three DMUs

must be accomplished by manual override to eliminate inadvertant data loss. Infor-

mation is called-up in transcending levels and, in general, the lower levels provide

greater detail.

Malfunction, out-of-tolerance, or anomalies can be presented on the MDUs and crew

attention effected through flashing and increased brightness tecmhniques. To aid the

crewman, nominal values are presented in the ranges of acceptance to permit the crew

to determine the extent of the problem. The center MDU is keyed to the caution and

warning system for automatically presenting information relative to the malfunction

being indicated on the caution and warning annunciators. In instances where more

than one malfunction occurs, MDU area sharing is accomplished through the data

management system (DMS).

The off-shelf MDUs recommended for the baseline are S-3A units with the nomenclature

of "Indicator, Tactical IP-1053/ASA-82". Specific performance data characteristics

for the baseline MDU are presented in Table 2.2-27. Usable display area is 6 by 9

inches. The three MDUs are equipped with contrast and brightness controls and are

designed to operate well within the expected Space Shuttle flight deck ambient environmeni

(approximately 4000 to 5000 ft candles).

o Manual Controls. Several types of manual controls were selected (see

Fig. 2.2-30). Standard throttle quads are recommended and allocated to the

pilot and copilot. For both pilot and copilot use, attitude controllers with yaw

disable are planned for the righthand positions and translation controllers are

planned for lefthand asitions. Figure 2.2-40 presents thrust/translation and

attitude control for space and atmospheric flight regimes; the spacecraft con-

troilers illustrated are typical of previous devices employed to perform these

functions. Rudder pedals and attitude controllers appear applicable from existin:

programs. However, the translation controller for main and OMS engine control

may require development, or at best, major modification from the current Apol
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Table 2.2-27

MULTIFUNCTION DISPLAY UNIT (MDU) PERFORMANCE CHARACTERISTICS

Parameter MDU Parameter MDU

Cathode Ray Tube:* Worst Case:**

Shape Rectangular Settle (within grid) 1 percent,

+0.00 P sec 6
Usable Rectangle, in. 6.45 0.1 percent (one-grid

X 125 position), psec 8

9.3 -0.12 Linearity (geometry), % 1.0

Phosphor P-31 Character Size (nom), in. 1/8 high

Spot Size, mil 9 Aspect Ratio (nom) 3/4

Brightness, ft-L 100 Character Generation Time

(Exclusive of filter) (max), in./sec 3.2

Writing Speed (max), in./see 565 ;000
Ambient, ft-candles 5500 .Video Bandwidth (T DS,
Gray Tones 8 system), MHIIz DC to 37

Deflection Random
Positioning, bits 10 (digital)

*The CRT faceplate radius of curvature shall be greater than 24 in.
**Deflections less than 0.5 in. shall take less than 3. 5 psec, and deflections greater

than 0. 5 in. shall take a time proportional to distance (not to exceed 8 tsec).

CM translation controller. Among the difficulties associated with the trans-

lation controller are problems affecting (1) control of two dissimilar thrusting

modes, (2) mode selection, (3) mixer boxes, and (4) consideration of wire

backup-linkage coupling.

o Multifunction Keyboard. The basic DMS interface is through the multifunction

keyboard (MFK). Two such keyboards are provided; one for the pilot and the

other for the copilot. These MFKs are located directly in front of the crewmen

to permit ease of operation and for clustering of important functions within the

main instrument panel area. The keyboards are utilized for the following

typical tasks:
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LM THRUST/TRANSLATION CONTROLLER GEMINI/LW/CM ATTITUDE CONTROLLER

UP: +X Oil LONGITUDINAL
TRANSLATION FWD ROLL

DOWN: -X OR LONGITUDINAL PITCHS TRANSLATION BACKWARD

YW RUDDER PEDALS

LEFT: -Y S RIGHT: +Y SUPERSONIC
REGIME TO

THRUST AND TRANSLATION ROLLOUT

SPACE FLIGHT REGIME ATMOSPHERIC FLIGHT REGIME SPACE

AXIS MAIN OMS RCS ABES EROCONTROL SURFACES RCS AXIS

+X / V _ V ELEVATORS V PITCH UP
BODY FLAP (PITCH TRIMA)

-x/ RCS HIGH LIFT DEVICES / PITCH DN

+y Z RCS ELEVATORS / ROLL L
O OR

-Y RCS ELEVONS V ROLL R

RCS UDDER YAW L
x - RUDDER

-Z / RCS _ YAW R

ATTITUDE CONTROL
D05612

Fig. 2.2-40 Control Function Interaction By Mission Phase

- Flight command entry

- Guidance and navigation computation and data entry

- Discrete event initiation

- Initiate preflight and postflight vehicle checkout functions - automated

- System and subsystem interrogation

- Callup and interrogate the COFIRM program

- Vehicle configuration control

- Callup subsystem information

- Callup nominal and emergency procedures

- Callup predictor display

- Subsystem configuration control and sequencing

- Consumables management control and interrogation

- Abort mission planning

Several types of keyboards have been examined and tradeoffs conducted. Table 2.2-28

presents the basic requirements considered essential for the keyboard.

2.2-79

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A995931
Vol II, Pt 4

Table 2.2-28

KEYBOARD REQUIREMENTS

DATA MANAGEMENT CONSIDERATIONS

OPERATIONAL CONSIDERATIONS
COMPUTER COMMUNICATION PERMITTED

OPERABLE UNDER g LOADS REPROGRAMMABLE ONO0ARD

MINIMIZED ATTENTION FOR ACTUATION AVAILABLE SOFTWARE PROGRAMS

VERY FINE AND DISCRETE MOVEMENTS REDUCED ADAPTACLE TO VARIOUS FLIGHT REGIMES/MJSSIONS

RAPID DATA ENTRY

MINIMUM ADDITIONAL SUPPORT EQUIPMENT UTILIZATION CONSIDERATIONS

MINIMUM COMPLEXITY

MINIMUM OPERATOR ERROR ENTRY POTENTIAL VARIETY OF USE FLEXIBIUTY

PILOT ACCEPTANCE MINIMUM VOLUME

INSTRUCTIONS MINIMIZED ALPHA4NUMERIC CAPABILITY

EASE OF USE IN PLANNED LOCATION

D06429

Six basic types of keyboards were evaluated against the requirements noted in

Table 2.2-28. Both the key-select matrix and page-6verlay keyboards met the require-

ments. Major consideration is being'given to the use of the S-3A "INCOS TACCO TRAY"

keyboard, since it is functionally integrated with the S-3A DMS, and therefore, avail-

able software is avionic applicable to the Space Shuttle. However, vehicle functions

not specific to avionics also must be considered. Although out of the scope of this

study, these nonavionics functions will have direct bearing on the keyboard functional

and software requirements. Thus, in addition to the S-3A keyboard, a page-overlay

keyboard is being considered ag an alternate for the Mark I Orbiter baseline.

Other manual controls employed are toggles, rotary switch controls, pushbuttons, and

special-purpose and shaped controls (speedbrakes, trim controls, fire pull handles,

valves, etc.); these are all off-shelf items with no major modifications anticipated.

Generally, these types of controls are provided to both pilot/copilot in instances where

sharing is not practical, when rapid and error-free actuation is necessary, or when

"feedback feel" .is required.
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o General Displays. Several types of displays, in addition to the MDUs, are

incorporated. Caution and warning (C&W) annunciators are provided to alert

the crew to all emergencies, malfunctions, and out-of-tolerance conditions that

affect crew safety or mission success. The prime C&W annunciator is located

directly above the basic instrument group (Fig. 2.2-36, Item 22) within the

prime cone of vision envelope. This annunciator displays via message format

the particular system that has malfunctioned, gone out-of-limits, etc. A basic

matrix of annunciators broken down to subsystem level (Fig. 2.2-36, Item 42)

illuminates further pinpointing of the problem. These annunciators are hard-

wired for crew safety purposes. In response to the annunciator signal, the

center MDU (CRT) presents further status information regarding the problem.

At this point, the copilot will, in general, continue to interrogate the subsystem

in question using the MFK (keyboard) and MDU to isolate the problem and to

determine the most effective resolution (assuming a nonautomated changeover

to a redundant subsystem or equipment item).

Other displays - such as digital readouts for time, annunciators of status,

light-emitting diodes (LEDs) for quantitative readout, mechanical readouts

(communication panel), lamps (abort), and mechanical flags (Apollo-type)

are required. Additionally, standard instruments -- such as indicated in

Table 2.2-24 and illustrated in the flight instrument cluster shown in

Fig. 2.2-36 - complete the display complement.

o Control and Display Test and Checkout. Utilization of the basic S-3A data

management system and inherent BITE equipment and interface units permits

continual test of the C&D instrumentation subsystem to the LRU level. In essence,

the test capability is built into each major equipment item, and the DMS is

constantly interrogating the equipment to determine health status. The status

is not called to the attention of the crew unless a malfunction, anomaly, or

out-of-tolerance condition is sensed. As discussed previously, C&W annun-

ciators, subsystem status annunciators, and the MDU (CRT) are employed to

facilitiate checkout for automatic or manual interrogation. This system is
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basic to the S-3A and has proven to be a major enhancement to both flight-

and ground-crew personnel. Furthermore, the technique lends itself specifically

to the VAST type of ground checkout which has the potential for a significant

reduction in GSE checkout equipment.

o Control and Display Subsystem Maintainability. The basic flight-deck control

and display subsystem has been designed from the outset (1) to facilitate

maintenance, (2) permit instrument or component replacement, and (3) to

ensure that subsystem integrity has not been compromised. Maintenance con-

siderations include:

(1) Access

o Front access for all control and display instruments

o Instruments all removable from the front

o Track and rail installation for removal/replacement of "heavy"

instruments

o Service loops to facilitate front removal/replacement

o Lamps replaceable from the front

(2) Design

o Electrical disconnects at the panel

o Panel-structure captive mounted instruments

o Module, control, or display device removal/replacemenit

o Service loops in reel-roll configuration

o Groundline to assure crew safety

o EMI protection

o Modules are LRU configuration

All instrument panels are designed with respect to consoles, seats, and associated

equipment to permit adequate installation and removal/replacement volume. Instru-

ments can be panel demated and removed without decoupling the connectors to facilitate

on-site servicing, inspection, and checkout. Also, instruments are provided with a

second connector interface (capped) for initial flight testing and subsequent ground

checkout; this precludes the requirement to pull the unit simply to run service,

continuity, or basic checkout while on the ground.
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2.2.1.4.5 Baseline Rational -Controls and Displays -Mark I. Rationale for selection

of the baseline C&D included several major considerations. These are delineated below:

o Incorporation of the basic S-3A data management system and system interface

units

o Inclusion of S-3A and compatible L-1011 and C-5A control/display instruments

o Incorporation of the S-3A "BITE" to reduce inflight or ground checkout man-

hours and complexity

o Inclusion of the L-1011 autopilot/land instruments and subsystems

o Utilization of the off-shelf-developed basic flight displays for both -atmospheric

and exoatmospheric flight modes

o Use of the basic flight displays for on-line operational and backup

(dedicated)

o Incorporation of multifunction display units (MDUs) with CRTs for program-

mable data and for presenting only mission-regime specific information

o Reduction of displays through use of the multifunction display units

o Elimination of the Flight Systems Engineer through:

a. Reducing checkout and test instrumentation and displays

b. Presenting only mission-regime specific data to the pilot/copilot

c. Reducing displays and, hence, scanning which reduces workload

d. Introducing the autopilot/land subsystem which frees considerably the

workload from the pilot/copilot, thus permitting monitoring of other

subsystems with greater attention

e. Incorporating the third MFD and allocating it primarily for subsystem

status, sequencing display, and COFIRM functions

f. Locating flight management information on the MFD in front of the

pilot/copilot'

g. Dual use of several instruments, thus reducing panel area and

providing additional space for displays/controls at the pilot/

copilot station panels

h. Providing for computer-aided vehicle configuration, consumable con-

servation, abort-mission planning, and vehicle sequencing
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o Duplication of basic flight display and control instruments at both the

pilot/copilot panels to facilitate ease of takeover or flight control from

one position in emergencies

The basic S-3A DMS and associated SIUs currently incorporate programmable and

displays controls including the use of three CRTs. Thus, the LMSC baseline takes

advantage of existing and proven capability, thereby, nearly eliminating any risk

factors associated with a programmable C&D approach. Furthermore, considerable

software applicable to flight displays currently exists and can be utilized.

2.2.1.4.6 Panel Area, Crew Complement, and Control and Display Weight Factors.

Panel Area Layout. Development of the basic main instrument panel layout is

predicated on standard crew-function allocation factors and anthropometric consider-

ations. Primary flight C&D are provided to both the pilot and copilot (1) to facilitate

flying the vehicle from either seat position and (2) to provide redundancy of C&D con-

sidered critical to crew safety and mission success. The selected C&D layout grouping

groundrules are pictorially presented in Fig. 2.2-41. This arrangement is traditional

and presents no violation of accepted practices. Control and display layout within this

grouping is achieved as per Fig. 2. 2-36.

Crew Complement and Location. Pilot and copilot locations are shown in Fig. 2.2-42.

Also included are system/payload and tele-operator work stations. During the initial

horizontal and vertical test flights, it is strongly recommended that a third crewman

and work station be provided; this position will greatly off-load typical test and check-

out functions from the pilot and copilot, thus measurably reducing workload. Upon

completion of the test flights, this "Flight Systems Test Engineer" station is recon-

figured into the payload monit4ing and checkout work station. Thus, no scar penalty

is recognized in growth from the test vehicle to the operational vehicle.

The tele-operator work station is provided for payload manipulation and satellite de-

ployment or capture; remote manipulator C&D is required at this station to facilitate

these functions. Additionally, it is strongly recommended that attitude and translation

controls as well as range, range rate, etc. , displays be incorporated at this station

to facilitate vehicle maneuvers associated with payload activities. Inclusion of these
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PILOT COPILOT

DISPLAY

DIS........PLAY ... CO RO........ TRANSITION... .CONTROLS .. T. P: . :ZONE

CONTROLZONE

MULTIFUNCTION DISPLAY
o SUBSYSTEM DATA
o MISSION STATUS
o BACKUP

.~. PRINCIPAL DISPLAY AND CONTROL

D05636

Fig. 2.2-41 Control and Display Layout Grouping Groundrules

SYSTEM PAYLOAD

CONSOLE

TELE-OPS
r- I - 1 CONSOLE

_-_ _ _ ' -: ' .
COPILOT

COPILOT SEAT
THREE OPERATIONAL POSITIONS

--
VEHICLE o STARBOARD FACING - SYSTEMS/PAYLOAD

o FORWARD FACING - LAUNCIVBOOST/REENTRY
o AFT FACING - TELE-OPERATOR

Fig. 2.2-42 Systems/Payload Monitoring and Tele-operator
Console/Seat Positions
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additional flight C&D necessitates positive techniques for transfer of these functions

from the pilot/copilot station aft to this work station (if located on the flight deck).

Figure 2.2-43 presents a simplified concept of this arrangement. Transfer of flight

control and visibility are two potential areas for major investigation and analysis.

Control and Display Weights and Panel Areas. A comparison analysis was made of

aircraft and spacecraft panel areas and control/display weights. Figure 2.2-44 presents

these data in summary form. The third crew station is recommended for the test flights

only. Thus, C&D weight for the Mark I operational vehicle is determined as 717 lb.

It is important to note that 189 lb of the total weight is allocated to the CRTs. Display

generation and computers associated with the C&D subsystem are charged to the data

management subsystem.

Panel area for the operational Mark I vehicle is 13.5 sq ft, realizing that the systems

engineering station (8.3 sq ft) requirement drops out after the test program. Other

aircraft and spacecraft panel areas are included for comparative purposes. Of interest

is the display and control panel area versus weight-density plot presented in Fig. 2.2-45.

It shows that for the baseline Mark I control and display subsystem, maximum control

and display panel density (53 lb per sq ft) is realized, thus, tending to indicate reason-

ably efficient use of panel area.

39 DEG. ORSTRUCTED
VIEW

PAYLOAD MONITORING
jCONSOLE

11 DEG PAYLOAD
PILOT/ DEG COMPARTMENT
COPILOT VIEWING
FL. ENVELOPE

CONSOLES

TELE-OPERATOR
C & D PANEL

S\-,_TELE-OPERATOR
CONSOLE

D05830

Fig. 2.2-43 Systems/Payload Monitoring and Tic-Operator Consoles
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AIRCRAFT SPACECRAFT SPACE SHUTTLE

CREW SIZE 4 3 2 2 2 3 3  3  3 2

EWMEN MEN MEN MEN MEN MEN MEN MEN MEN MEN

C ALT C ALT C
VEHICLE C-SA 1011 S-3A GEMINI LM CM ALT A ALT 8 (TEST) (OPS)

TOTAL - S FTANL 57 26.75 9.3 19.4 16 27.1 2.1 23.9 21.8 13.5
AREA* - SQ FT

TOTALCA 790 313 400 260 290 344 8 810 705/988 717
WEIGHT LBS

PILOT/COPILOT STA SYS ENGR STA CRT'S SUMMARY

WEIGHT AREA WEIGHT AREA WEIG; IT WEIGHT AREA
L SFT) (L) SQ FT) NO (SQ FT)

ALTERNATE A 602 13.5 276 14.6 0 0 878 28.1

ALTERNATE B 602 13.5 208 10.4 1 63 810 23.9

ALTERNATE CT 514/797 13.5 189 8.3 1 63 705/988 21.8

(HORZ/VERT TEST)

ALTERNATE Co 528 13.5 0 0 3 189 717 13.3
(OPERATIONS)

005781 (1)

Fig. 2,2-44 Control and Display Panel Area and Weight Comparison

C-5A
o 0 (9.9 LB/FT)

70--

SQ FT
40 loll 2

(8.5 LB/FT2

CM
30 (11.3 L/FT2)

GEMINI
20 -4 (12 LB/FT2)

(28.6 LB/FT
2

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
LBS

DO5615

Fig. 2.2-45 Control and Display Panel Area Vs Weight Density (Nonnormalized)
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2.2.1.4.7 Control and Display Tradeoff Analses. Several tradeoff studies were

conducted to support the development of the control and display configuration, definition,

and layout process. Additional supplementary analyses also are included to present

the range of C&D data and impact factors considered. Both trades and analyses are

briefly discussed in the following paragraphs.

Circuit Breaker Analysis. Circuit breaker estimates (approximately 500 or more)

are made for the vehicle. From the newly developed coneept of "remote circuit

breakers," the estimated panel area is placed at approximately 16 sq ft. Table

2.2-29 presents a circuit breaker area-panel comparison between representative

spacecraft and aircraft, thus further substantiating the dedicated panel area relegated

to these necessary C&D items.

Display Device Tradeoffs. A review of potentially applicable displays was

made to determine status and availability; Table 2.2-30 presents an encapsulated

summary of this review° H rolgrams, lasers, and grid-type displays are all in the

Table 2.2-29

CIRCUIT BREAKER PANEL AREA COMPARISON

AREA

VEHICLE

C-5A 761 2560 3321 23

1011 198 165 1144 1507 10.25

S-3A 677 677 4.7

GEMINI 192 72 72 336 2.3

LM 425 425 850 6

CM 120 240 360 2.5

D056 13
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Table 2.2-30

DISPLAY TRADEOFFS

TYPE FEATURES S/S USE STATUS

DISCRETE

o INCANDESCENT HIGH BRIGHTNESS/SIMPLE COMMERCIAL AND MILITARY JETS
o GAS DISCHARGE MEDIUM BRIGHTNESS/LIFE AVAILABLE COMMERCIAL INDICATORS

o LIGHT-EMITTING HIGH BRIGHTNESS/LIFE PROTOTYPE
DIODES

o ELECTROLUMINE- SLOW FAILURE/MULTI- COUNTERS/ APOLLO
SCENT COLOR BARGRAPHS

o FLUIDIC HIGH AMBIENT USE/ EXPRIM . I
REFLECTIVE

o LIQUID CRYSTAL FIXED MESSAGE/
REFLECTIVE

FIXED STORAGE

o FILM LARGE INFORMATION AIRCRAFT MAP DISPLAYS
CONTENT MAPS AND

INSTRUCTIONS

o HOLOGRAM LARGE INFORMATION "NSRXPERIMECTALTii
CONTENT

SERVOS UNAMBIGUOUS DISPLAY INSTRUMENTS APOLLO, COMMERCIAL AND
ADI, HSI, ENG MILITARY JETS

D05623

TYPE FEATURES S/S USE STATUS

CRT

o I-GUN B&W HIGH BRIGHTNESS/RESOLUTION 1011,SST,F14

o 3-GUN COLOR LOW BRIGHTNESS/COLOR COMMERCIAL TV
CONTRAST

o I-GUN COLOR MEDIUM BRIGHTNESS/COLOR PROTOTYPE
CONTRAST MULTI-PURPOSE

o 7-GUN WRITING SPEED DISPLAYS PROTOTYPE

o STORAGE TUBE VARIABLE PERSISTENCE COMMERCIAL AND
MILITARY JETS

o 4-GUN STORAGE SIMULATED PERSISTENCE/MODE PROTOTYPE
TUBE

o LASER NO VACUUM/MULTI-COLOR iXERIi

GRID

o PLASMA MEMORY/HIGH BRIGHTNESS ::EXPERIMENTAL

o THERMO- HIGH AMBIENT/CONTRAST/ MULTI-PURPOSE iEXPERMENTAL:i::
CHROMIC REFLECTIVE DISPLAYS

o MAGNETO HIGH AMBIENT/CONTRAST/ :PE'JitNYAL
OPTIC REFLECTIVE

D05624
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experimental stage and are not considered sufficiently statet-of-the-art devices to

consider their inclusion as candidate displays.

Keyboard Tradeoffs. Six basic keyboards were examined (Table 2.2-31) relative

to three specific criteria areas: (1) data management, (2) utilization, and

(3) operational. Analysis results indicate that, for the requirements and constraints

considered, only two keyboards generally meet the criteria. The key-select matrix

keyboard incorporates fixed function keys and four-position variable indicators, thus

providing considerable flexibility and functional capability. One POK folio can provide

between 300 and 400 discrete functions, This technique appears promising and is a

strong candidate for inclusion in the C&D subsystem.

Hand Controllers. Eight types of hand controllers were examined for their

applicability to flight control (see Fig. 2.2-46). Analysis of criteria concerning these

candidates results . in the development of the data produced in Fig. 2.2-47. The two

controller candidates, which generally meet the criteria acceptance envelope, are the

dual- and single-side arm controllers (starred).

Propulsion Displays. The propulsion-engine system is composed of five

separate subsystems: (1) main engines, (2) orbital maneuvering system (OMS),

(3) reaction control system (RCS), (4) airbreathing engines (ABES), and (5) auxiliary

power units (APU). The display of information on a dedicated hardwire basis to the

crew promotes several problems in terms of panel area consumption. Analysis of

these potential problems results in the development of a discrete series of steps and

resultant information. Table 2.2-32 presents propulsion parameters by the five

subsystems with the total parameters indicated for each. The minimum number of

displays required by each subsystem (which totals 80 for the sum of the five subsystems)

is indicated in Table 2.2-33 To determine the need by mission regime for each of the

subsystems, requirements by mission phase are established on a time-line basis and

are illustrated in Fig. 2.2-48. Next, the types and numbers of displays required, as

indicated by de time-line, are developed for the five subsystems (see Fig. 2.2-49).

Thus, two rows of meters, as seen in Fig. 2.2-50, are required; by sharing (hardwire)

displays, engine status can be displayed based. on the time-line for all parameters
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Table 2.2-31

KEYBOARD TRADEOFF SUMMARY

DATA MGMNT CONSIDERATIONS UTILIZATION CONSIDERATIONS

0

KEYEOARD TYPES 0J fUo

STANDARD EXTREMELY EXTREMELY YES
NUMERIC LIMITED LIMITED

NOUN/VERB35/Y
NOUN/VERB YS NO Y YES YE YS

FIXED VERY VERY VERY LIMITED
NOMENCLATURE LIMITED LIMITED LIMITED E

KEY-CURSOR YES YES LIMITED YES LMITEDY LIGHTLYED YES YES LIMITED

KEY-SELECT i YES /YESES ES SLIGHTLY SLIGHTL YES YES

O VERLAY YE S YES NO YE S Y S ES YES YES

D0o5641

OPERATIONAL CONSIDERATIONS

KEYBOARDTYPES O~ z -
9"

STANDARD YES YES YES YES YES Y YES / YES NO

NOUN/VERB YES YES YESYES

MTRIXOVERY YES YES YES Y YES YES jS VRY

005640
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YOKE YOKE AND HANDLE

DUAL SIDE-ARM ' SI NGLE SIDE-APJM

O5671

Fig. 2.2-46 Candidate Translation/Atitude Controllers
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Fig. 2.2-47 Attitude Control Device Tradeoffs
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Table 2.2-32

PARAMETERS BY SUBSYSTEM - PROPULSION EXAMPLE

PARAMETEI/CONDITION UNITS P ,;TOULSION SMSIYSTEM
ITEM DISPLAY REQL lMMENT TO BE

MONITOA'D MAINI A'-0 OM5s Cs AES

SUBSYSTEM IDENTITY - 1 1 1
2 PERCENT THRUST COMWMANDED IENG. 4 2- -
3 PERCENT THRUST tEING DELIVERED DY ENGINES ENG. 4 - 2 -

4 V REMAIINNG TOTAL e - /
5 ENGINE GIM.AL POSITION IN PITCH LNG. 4 - 2

6 EN4GINE GIt'BAL POSITION IN YAW ENG. 4 - 2 - -
7 THRUST VECTOR ALIGNMENT ERROR IN FITCH ENG, 4 2 -
8 THRUST VECTOR ALIGNMENT EROR IN YAW ENG. 4 2 - -
9 FUL.,/OXIDIZER MiXTU-E R TIO (% F2 ENG.- -

10 FUEL QUANTITY EMAININIG 02% FUIL .EMAIN. TANIS I . 2 3 2

11 OXIDIZER UANTITY RETkINING OF %9O ItAAIN. TANKS I ( ,OO. FROP) 2 3 (MONO-POf)
12 FUEL TEMPERATLRE TANKS 1 6 2 3 2
13 OXIDIZER TEMPEATI t. r TANKS I - 2 3 -

14 FUEL FRESSLRE TANKS I 6 2 3 2
15 OXIDIZEk FIRESSU TANKS I - 2 3 -

16 HELIUMr FESSSE TANKS - 6 2 6
17 I HELIUM QUANTITY TANKS - 6 2 6
1 ENGINE" RPM ENG. - - -
19 COMBUISTOR OUTLET TEMPE ATLIE ENG. - -
20 PERCENT RPM N1  ENG. -

21 PERCENT N NG. - - - -

22 TUlRBI NE BLADE TEMPERAILRE ENG. - - - - 4
23 FUEL FLOW ENG. - - -
24 ENGINE OIL TEMPE,.ATeJRE NG. - - - 4

5 ENGINE OIL FTESSLME , G. - - - - 4

26 ENGINE OIL QUANTITY ENG. - 4
2? ENGINE VitA TION - FAN STAGE ENG. - - - - i

TOTAL PARAMETES 32 36

1=72

Table 2.2-33

MINIMUM DISPLAYS REQUIRED BY PROPULSION SUBSYSTEM

PROPULSION SUBSYSTEM PARAMETERMIN. 140.

SDIS MAIN APU OMS RCS ABESDISPLAYS
REQUIRED SCALES SCALES SCALES SCALES SCALES

REQD REQ'D REQ'D REQ'D REQ'D
INFORMATIN TYPE432 432 432 432

QUANTITY (PROPELLANTS,
HELIUM, OIL) 12 2 V 6 12 ' 6

TEMPERATURE (PROPELLANTS,
HELIUM, OIL, OTHER) 10 2 9 /  

4 p 6 V 10l
PRESSURE (PROPELLANTS,

HELIUM, OIL, OTHER) 12 2 / 12 0' 6 Q V 12 v I 6 ' V

RPM 8 '- 3 - - 8

FLOW 4 - - - - 4

POSITION OF ENGINES & ERROR 16 - 8 -

THRUST(COMMAND & ACTUAL) 8 Q - 4 V - -

AV I

MIXTURE RATIO I- - V - I

VIBRATION 8

TOTAL INDIVIDUAL INDICATORS 80 32 36 29 L 3i4
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LEGEND:

CRT DISPLAYS OF GUIDANCE FAILURE, CRT

BOOSTER EXCESSIVE RATES, LOW THRUST, STAGING

ORBITER 4-TAPE METERS
ORBITER:

MAIN 3-TAPE METERS

OMS s1

RCS

ABES

APU

ANY SUBSYSTEM -------- --

ORBITER 36 68 59 30 30 79 78
PARAMETERS

LAUNCH/ ORBITAL OPERATIONS DEORBIT HYPERSONIC SUBSONIC

ASCENT REENTRY SUPERSONIC APPROACH

PRELAUNCH LANDING

D05663

Fig. 2.2-48 Propulsion Display Requirements by Mission Phase

PROPULSION SUBSYSTEM MINIMUM
TYPES OF NUMBER

DEDICATED INDICATORS REQUIREDMAIN APU OMS RCS ABES REQUIRED

4-TAPE VERTICAL METER 6 A .4 9

3-TAPE VERTICAL METER @ 10 12

2-TAPE VERTICAL METER 3 3 6

SINGLE-FUNCTION METER 1 2

TOTAL l 12 11 10 12 29

ROW 2----12 3-TAPE METERS

-9 4-TAPE METERS -5.

ROW 1----6 2-TAPE METERS

L-2 SINGLE FUNCTION METERS

ROW 1

D0566,4

Fig. 2.2-49 Types and Numbers of Propulsion Displays Required
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ABES AGES

MAIN MAIN

OMS- - OMS ---

OMS OS

= 1 A11

MAIN AESMAINOAE

PERCENT
FUEL

APU

RCS

APUAPU A

APU RCS t j5 Ii

D05690

Fig. 2.2-50 Propulsion Subsystem Dedicated Displays

indicated in Table 2.2-31. Accordingly, only 29 displays of the original 80 need be

provided, based on this common share principle, while still maintaining a dedicated hard-

wire philosophy. Furthermore, the panel reduction can be considered at least 50 percent

of the original requirement.
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2. 2. 1. 5 Data Management and Onboard Checkout. The baseline Data Management

Subsystem (DMS) is fundamental to the accomplishment of the goals of performing

pilotage tasks with a two-man crew, meeting reduced turnaround times of 30 days for

Mark I and 2 weeks for Mark II, and achieving sufficient autonomy for an airplane

type of operation, i.e., be independent of an earth based Mission Control Center (MCC).

The baseline DMS is incorporated into the orbiter to assist both the space and ground

support crews in decision making in all aspects of the mission, and to perform routine

tasks that are attendant to the required mission. A single-thread nonredundant concept

identical to the S3A DMS, complete with a hard-wired backup capability for all safety

of flight (SOF) functions, was selected as being compatible with program needs while

minimizing development and attendant programmatic costs and schedule risks.

The degree of DIMS participation in performance of tasks is planned to progress from

a low level during early horizontal flight test to nearly complete automatic control

with crew override option as a growth capability in Mark II.

Pbhased acquisition of the DIVS is accomplished as shown in Table 2.2-34. This

approach eliminates the parallel development of a development flight test instrumentation

(DFI) subsystem while simultaneously gaining demonstrated confidence in the operational

DMS hardware in its ultimate system environment. Operational functions (including

effectivity) accomplished within the DMS are listed in Table 2.2-35.

2.2. 1. 5. 1 Baseline Approach. The baseline DMS is an integrated adaptation of

exdsting, developed subsystems and supporting software. Development is limited to

hardware and software modifications at the module level and integration of the sub-

systems into a versatile system through hardwired interface units.

The developed subsystems integrated into the 040A baseline DMS are: the S3A data

management subsystem consisting of a UNIVAC 1832 computer, 6MAIz dedicated data

transmission lines, and standardized system interface units (SIU); an analog multiplex

data gathering subsystem from the LMSC SESP program; and elements of the Apollo

Block II communications and data subsystem. The SESP multiplex subsystem and the
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Table 2.2-34

DATA MANAGEMENT SUBSYSTEM PHASED ACQUISITION

Phase DMS Status

Development prior to Bench integration of S3A computer subsystem,

FHF P-50 instrumentation multiplex subsystem and

Apollo telemetry subsystems.

FHF S3A computer subsystem, P-50 instrumentation

subsystem, and Apollo TLM subsystem employed

as an integrated DFI.

FVF S3A computer subsystem and P-50 instrumenta-

tion employed as operational crew support,

flight test engineer support, and integrated DFI.

Added P-50 instrumentation multiplexing to

support DFI acquisition of data for test phase

only. Apollo TLM subsystem for DFI downlink

and proof of operational capability.

Mark I S3A computer subsystem, P-50 multiplexing

subsystem (operational data only), and Apollo TLM

subsystem as an earth cooperative support sub-

system. Automatic control limited to the

instrumentation and electrical power subsystem

in flight, available for all avionics S/S control

between flight tests.

Mark II S3A computer subsystem and P-50 multiplexing

subsystem providing crew support necessary for

autonomous operation. Apollo TLM retained as

an emergency support option. Automatic sub-

system control capability limited by funding only.
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Table 2.2-35

DATA MANAGEMENT FUNCTIONS EFFECTIVITY

MARK I
FUNCTION HFT VFT OP'L MARK II

ONBOARD COIFI AND DATA EXTRACTION o0 0 0

INSTRUMENTATION AND ELECTRICAL POWER CONTROL o o o 0

ABORT AIDS o o o o

GN&C COMPUTATIONS o o - o

ONBOARD COIFIIRM o o o

SYSTEM MANAGEMENT AIDS 0 o o

AVIONICS CONFIGURATION CONTROL o 0

CONSUMABLES MANAGEMENT 0 0

RENDEZVOUS COMPUTATION 0 0

PAYLOAD MANAGEMENT o

AIC AND SIC FLIGHT CONTROL o

NONAVIONICS CONFIGURATION CONTROL o

MISSION PLANNING o
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Apollo communications and data subsystem elements are discussed in par. 2.2.16,

Instrumentation. The S3A adaptation which forms the heart of the on-board DMS is

detailed in the following paragraphs. An overview block diagram of the S3A DMS

baseline is shown in Fig. 2.2-51.

The DMS is integrated around a general purpose digital computer system (UNIVAC 1832)

with dual central processors used in the S3A avionics system. Each central processor

has access to two banks of deposited film memory, each containing 32, 768 32-bit words,

with effective cycle times of 750 psec. If operands and instructions are in different

banks, instruction overlap is possible, yielding add times (including access) of 1.3

psec and multiply/divide times of 12.1 spsec.

Input/Output (I/O) is provided through the Input-Output Controller (IOC) and Input

Output Interface (IOI) units (Fig. 2.2-52). The IOC units provide the control logic

which interprets and carries out I/O operations. A self-contained command repertoire

allows direct access to and from core memory, without interruption of central process-

ing. Each of the IOC units operates independently, and may gain access to either

memory bank. Each IOC may control up to eight bi-directional serial channels and

one parallel channel, yielding a capability (with both IOCs active) of data transfer

rates of 1.3 million words per sec. The IOCs accept and generate various types of

interrupts.

The IOI units (Figs. 2.2-52 and 2.2-53) provide signal level matching, serial/parallel

conversion, line receivers and transmitters, and storage necessary for buffered

communication with external avionics equipment through SIUs. Each IOI operates

independently and may operate with either IOC. IOI design is modular by channel;

no single failure will disable more than one channel.

The IOI units communicate withthe other subsystems through SIUs, which terminate

the 6 MHz serial shielded twisted-pair lines that are the standard communication

means of the system. Each SIU contains a receiver/transmitter pair, response

control logic, and storage for the standard 36-bit communications word (Figs. 2.2-54

and 2. 2-55). The remaining portion of the SIU is tailored to the particular subsystem

interface required.
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S3A ELEMENT
SEE PARAGRAPH

2.2.1.4, CONTROLS
& DISPLAYS

I INTEGPATED I
I CONTROL PANELI COMMUNICATIONSL. . ... .- .- J SI U

GN&C SIU

r - CENTRAL SEE PARAGRAPH
'r ICNo G CO EA L- [ 2.2.1.6

I I SP . O COMPUTER O INSTRUMENTATION

LL ------ = SiU

ELECTRICAL -------
r D-- 1 POWER SIU P-50

SANNNICATORS ANALOG

INSTRUMENTA- L-
TION SIU

PANEL 01 TATPE UN IPROGRAM LOAD

DO41O

Fig. 2,g2-51 S3A Elements of Data Management- Mark I Orbiter

OFFLINE OCC IG MAG
BUFFER TAPE UN1ITDATA EXTRACTIONN
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Fig. 2.2-52 DMS Central Computer Subsystem
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The primary Mark I SIUs are adapted from the S3A program to interface with the

avionics subsystems, i. e. communications and tracking, electrical power, guidance/

navigation and control, control/display, and instrumentation. The hardware capability

for monitoring and control exists within this basic Mark I configuration; however, only

the electrical power subsystem will be operationally commanded in Mark I.

The existing S3A capability for automatic checkout of flight readiness is employed for

the avionics subsystems through their SIU interfaces with the DMS. Those signals

required to activate internal BITE and to initiate subsystem action attendant to checkout

for flight readiness are either originated in the SIU through computer command or

implemented by personnel at the flight station through operational controls on cue from

the DMS via programmable display.

Passive monitoring for analysis of nonavionic subsystems is provided through the

instrumentation interface into the DMS central computer, control being supplied by

crew action if necessary for checkout and fault isolation.

An interface is provided for tying the GSE automatic checkout facility and the on-board

DMS into a single unified checkout and fault isolation system for maintenance and

launch operations.

The IOIs also communicate more directly with the magnetic drum and digital magnetic

tape mass storage devices. The drum has capacity for 400,000 32-bit words with

average access time of 12.5 msec. Each tape has capacity for 3. 5 million 32-bit

words, giving total system mass storage of 7,400,000 32-bit words.

An integrated control panel is also serviced through the IOI, allowing direct manual

man-machine communication. The operation of the keyboard is software-interpreted,

allowing key function to change.from mission mode to mode. The programmed displays

are versatile cathode ray tube devices that allow the presentation of both graphic and

alphanumeric information to the crew. Both operations peculiar and supplemental

trouble-shooting data are accessed as required.

The IO communicates with booster subsystems through the booster SIU, which is

contained in the orbiter.
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Fig. 2. 2-55 S3A Serial Driver/Receiver - Coder/Decoder Block Diagram

Hardwired flight-critical annunciators bypass the DMS by being wired in parallel from

the input to instrumentation and booster SIUs for Safety-of-flight on-board checkout and

abort warning functions.

2.2. 1. 5. 2 Composite Aircraft/Spacecraft Avionics. The merging of aircraft and

spacecraft functions in the DMS occurs primarily in the areas of instrumentation and

in maintenance and mission logging on the digital magnetic tape. The integrated

control panel and programmatic displays perform functions in either areas, as the

software directs.

The S3A program has developed the techniques and hardware necessary to successfully

integrate avionics and electrical/electronic units into a centralized DMS through the

SIU, using a combination of standard and specialized interface circuits. The baseline

DMS employs identical methods of consolidating available BITE outputs from the S3A,
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L-1011, Apollo, and other manned program hardware selected for the avionics system.
For the limited units which do not include BITE sufficient for preflight readiness vali-
dation, the signal/logic validation techniques developed on the C5A MADAR are
implemented to achieve a self-contained checkout and fault isolation capability within
the orbiter for avionics subsystems in the Mark I phase.

An interface between the DIMS computer and the GSE automatic checkout complex
permits ground crew access to all data within the DMS computer and provides a
capability for failure analysis by the flight crew during the mission.

A conceptual overview of the DMS in the operational environment is displayed in.
Fig. 2.2-56, 2.2-57, and 2.2-58.
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2. 2. 1. 6 Instrumentation. The baseline instrumentation subsystem for the Mark I

Orbiter comprises transducing, signal conditioning, and multiplexing equipment;

telemetry formatting controls; FM recording equipment; a flight data recorder; and

a time code generator. The instrumentation subsystem includes both operational and

developmental flight instrumentation (DFI) in its formatting and recording capabilities

to meet the data requirements summarized in Table 2.2-36. DFI multiplexing and

cabling is separated from the operational so that the DFI is easily removable with

minimum labor and scar effect.

2. 2. 1. 6. 1 Multiplexing and Telemetry Formatting. The multiplexing and formatting

of instrumentation data is under control of the data management subsystem through

the instrumentation SIU. Communication between the DMS computer and the SIU is by

36-bit words as in the standard S-3A 6 MHz-line interface. SESP type multiplexer

cards are used for the first level of multiplex; each card can switch one of 32 lines

to a single line under control of a 5-bit address. The address is furnished to the

specific card from the DMS computer via the instrumentation SIU. The selected Apollo

Block II PCM telemetry equipment has multiplexing capability for 365 analog high level

points, 264 discrete inputs, and one 40-bit serial word. The handling of the various

classes of instrumentation data is discussed in the following paragraphs and diagrammed

in Fig. 2.2-59.

Analog Data Multiplexing. Approximately 200 analog points are considered to be safety-

of-flight items. These are fed directly into 200 points of the Apollo analog multiplexer.

For the noncritical points both analog and discrete, 2560 can be multiplexed using SESP

32-point multiplexers on 80 points of the Apollo PCM multiplexer and 80 SESP multi-

plexer cards. Eighty-five channels are available for growth and/or faster sample rates.

Discrete Data Multiplexing. FThere are 264 discrete data lines into the digital multi-

plexer of the Apollo Block II PCM telemeter. Assuming 100 of the discrete signals

are flight critical, these are tied directly to the discrete input line. Another 164 fast-

sample rate high priority discrete points can be tied to the direct discrete inputs, as

well as being digitized and transmitted through the analog channel for redundancy.
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Table 2.2-36

040A ORBITER INSTRUMENTATION SUMMARY

FHF I F Man FVF Unman Operational

Subsystem Equipment Oper Dev Oper Dev Oper Dev Mark I

Communications 9 1 10 - 10 - 10

Instrumentation 2 7 2 7 2 7

(S/C) GN&C Attitude 410 64 410 64 552
Control 410 64 410 64 552

(A/C) Navigation 54 34 -

(A/C) Flight Control 254 192 254 42 280 44 254

Display and Controls 20 20 20 - 20 - 20

Nay Aids (S/C and A/C) 32 26 70 6 70 6 78

Data Management 90 46 90 - 90 - 90

ECLSS 72 - 72 - 48 - 106

Propulsion 32 102 308 466 308 466 308

Struct/Mechanical 86 538 143 301 143 301 97

Hydraulic Power 60 89 60 6 60 6 60

Elect. Pwr Distribution 130 66 130 60 130 60 130

Elect. Pwr Generation 18 20 104 71 104 71 104

Total 859 1141 1673 1023 1675 1025 1811

2000 2696 2700 1811

Note: Oper = Instrumentation points required for basic operation

Dev Instrumentation points required for development flight test (DFI)
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INSTRUMENTED PARAMETERS
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Fig. 2.2-59 Baseline Instrumentation Subsystem

Serial Data Transmission. The 32-pot 0-it serial data word input is used for direct digital

transmission on the PCM link between the DMS computer andb reciving station (e.g.,

for time codes and crew entered data).

FM Data Transmission. Data not suitable for digital transmission are transmitted

via the FSS data input to the Apollo locquipm II premodulation processor of the system.

Formatting is accompished again by the inslemetrumy sysentation multiplexing. Biomedical

data may be ransmitted on available band SPAidth voice transmission channel, under control

of the communications SIU.

2,2.1.6.2 Int rated Vs Ove4 F The multiplexing hardware used for instru-

mentation consists of 32-point SESP multiplexers and Apollo Block II equipment. Because

of the inhereiit capability of the system, it was decided to integrate the DMS bit stream

and the SES? instrumentation system at the input to the Apollo equipment, rather than

dl7icate the computer control and telemetry system. The DFI first level multiplexing,
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wiring, and signal conditioning would be installed as an overlay for minimum scar

effect and minimum cost of removal.

Changes in software are limited to changing only the instrumentation tables and the

telemetry format.

The DFI system, then, is neither fully integrated nor fully overlayed, but a combination

that fits within the instrumentation/DMS capability at minimum cost.

2. 2. 1. 7 Baseline Orbiter Avionics Weight Summary. Available equipment has been

identified for mechanizing each subsystem. The subsystem weights are summarized

in Table 2.2-37 for each major development phase. The final operational avionics

weight is 9086 pounds, including a 10-percent assessment for equipment installation.

The detailed listings of equipment, unit weights, and prior program application are

given in Tables 2.2-38 A through F. These lists identify the required sequence for

adding equipment. It should be noted that the major change is from first horizontal

flight test to the vertical flight program. However, the use of FTV-1 as a passenger

carrier to accumulate operating experience on FTV-2 equipment should result in a

gradual buildup of capability; i. e., the indicated step function will not occur.
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Table 2..2-37

MARK I ORBITER AVIONICS WEIGHTS SUbHMARY

SOperational

Sibsystem FhF Wt. (lbs) FVF Man Wt (Ibs) FVF Unman Wt (lbs) Wt (1bs)

Guidance, Navigation 1119 2018 2018 2275

and Controls

Conmmunication and 316 436 436 531

Navigatin Aids

Electrical Power Generation, 2332 3696 3696 3696

Control and Distribution

Displays and Controls 751 1049 1049 717

Data Management 555 665 665 665

Instrumentation 493 664 693 376

Sub-Total 5566 8528 8528 8260

Installation (1iO) 556 853 826

TOTAL 6122 9381 9381 9086



Table 2.2-38A 1MAM I ORITER, AVIONICS BASELINE ~cF>-c-IP-NT LIST

FHF FVF Man FVF Unman Oper.

G-uid-nce, Navigation Unit
i and Control t. Total Total Total Total Program

SE,, i pmentl (1bs) Quan. Wt. Quan. Wt. Quan. Wt. Quan. Wt. Source

S2.1.1

ITv-d 53 2 106 2 106 3 159 747

DigMital Comp. (1832) 126 1 126 1 126 1 126 S-3A

Star Tracker 77 2 154 Bendix ATI 4

Horiz. Sensor 25 2 50 Agena

Navig. Data Repeater 55 2 110 2 110 2 110 S-3A

Converter /

TVC Electronics 30 3 90 3 90 3 90 Agena

ACPS Electronics 50 3 150 3 150 Agena

M. E. Gimbal Actuator 50 8 400 8 400 400 S V B

Subtotal 982 982 1239

S2.1.1.2

Direct Gyro 15 2 29 C-5A

Compass Coupler 9 2 17 C-5A

pa•ss Controller 1 2 2 C-5A

Fl x Valve 1 2 4 C-5A

Vertical Gyro 15 2 29 C-5A

Mag Compensator 1 2 2 C-5A

Subtotal
2.1.1.3

Rudder Servos 48 2 95 2 95 2 95 2 95 C-5A t

E-levon Servos 48 8 384 8 384 8 384 8 384 C-5A

PFUS Servos 5 10 50 10 50 10 50 10 50 Stol

Trim/Backup Servos 1 10 10 10 10 10 10 10 10 C-141

Speed Brake Servo 10 4 40 4 40 4 40 4 40 New

SElevon Computer 1 23 4 92 .4 92 4 92 92 L-1011

Rudoer Computer 23 2 46 2 46 2 46 2 46 L-1011
d eat ar DC tr Co p YF- ]2

Air Data Sensor Assy 29 2 59 2 59 2 59 2 59 -3A
, enftal. Air Data Comp.



Table 2.2-38A MARK I ORBITER AVIONICS BASELINE EQUIPMENT LIST

FHI FVF Man FVF Unman Oper

Guidance, Navigation Unit
and Control Wt. Total Total Total Total Program

O Equipment (ibs) Quan. Wt. Quan. Wt. Quan. Wt. Quan. Wt. Source
0

S .2.1.1.3 Continued

1 Pitch Rate Gyros 1.8 4 7 4 7 4 7 4 7 L-1011
!Roll Rate Gryos 2 4 7 4 7 4 7 4 7 L-1011

Yaw Rate Gryos 2 4 7 4 7 4 7 4 7 L-1011
lNormal Accel. 1.1 4 4 4 4 4 4 4 4 L-1011

r Lateral Accel 1.1 4 4 4 4 4 4 4 4 L-1011ll
r Longitudinal 1.1 2 2 2 2 2 2 2 2 L-101

Accelerometer
Pitch AFFDS Computer 28 2 56 2 56. 2 56 2 56 L-loll
Roll APFDS Computer 28 2 56 2 56 2 56 2 56 L-1011

-0
> Eng. Spd. Contr. Sys. 15 4 60 4 60 4 60 4 60 AH 56

m Speed Computer 27 1 27 1 27 1 27 1 27 L-1011
o Anti-skid Controller, 30 1 30 1 30 1 30 1 30 New

O Touch Down SW., Wheel
Spd. Sensor

-U.

Z Subtotal 1,036 1,036 1,036 1,036

TOTAL 1,119 2,018 2,018 2,275

O+



Table 2.2-38B MARKP I ORBITfER AVIONICS BASELINE EQUIPFVENT LIST

FHF FVF Man I FVF Unman I O-er

eCommunications and Unit

Tracking Wt. Total Total Total Total Program

Equipa ment (bs) Quan. Wt. Quan. Wt. Quan. Wt. Quan. Wt. Source

2.1.2

Pre- mod Proc. 11 1 11 i 11 1 11 1 11 Apollo

i Unif. S-Band Eq. 38 1 38 1 38 1 38 1 38 Apollo

S-Band FP.A. 32 1 32 1 32 1 32 1 32 Apollo

U1F SCVR 33 2 66 2 66 2 66 2 66 S-3A

Up D:ta Link 22 1 22 1 22 1 22 1 22 Apollo

S-Band Ant. Switch 3 1 3 1 3 1 3 1 3 Apollo

UHF Ant. Switch 2 1 2 1 2 1 2 1 2 S-3A

Antenna 2 2 4 2 4 2 4 2 4 Apollo

ATC Transponder 12 2 24 2 24 2 24 2 24 C-5A

ATC Antenna 3 2 6 2 6 2 6 2 6 C-5A

Ti Rec. Beacon 13 1 13 1 13 1 13 1 13 Apollo

ViM Rec. Beacon Ant. 1 1 1 1 1 1 1 1 1 Apollo

Tacan 37 2 74 2 74 2 74 2 74 S-3A

1LS RCVR 10 2 20 C-5A

AILS RCVR 15 2 30 2 30 2 30 C-Scan

Radar Altimeter 10 2 20 2 20 2 20 S--A

Orbit Altimeter 45 2 90 2 90 3 135 Sky Lab

Prec. Ranging System 25 2 50 Ciris

TOTAL 316 436 436 531

I ___________ _______________________ _______- ____

?-zOCA

-jy

~i~c



Table 2.2-38C MARK I ORBITER AVIONICS BASELINE EQUIPM\ENT LIST

FHF FVF Man FVF Unman Oper

Unit

Electrical Power Wt. Total Total Total Total Program

jEquipment (ibs) Quan. Wt. Quan. Wt Quan. Wt. Quan. Wt. Source

2.1.3

Electric Power i
Distribution

Gen. Ctrl. Unit 8 3 24 3 24 3 24 3 24 S-3A

SFIMRRectifier 18 3 54 3 54 3 54 3 54 P3V

DC Bus 595 2 1,190 2 1,190 2 1,190 2 1,190 New

AC Bus 290 2 580 2 580 2 580 2 580 New

Static Inverter 40 4 160 4 160 4 160 4 160 Apollo

DC Distribution Units 10 6 60 6 60 6 60 6 60 New

AC Distribution Units 10 2 20 2 20 2 20 2 20 New

Subtotal 2,088 2,088 2,088 2,088

! Electric Power
Generatic o

Fuel Cell (2K Hr) 298 3 894 3 894 3 894 P&W Dev.

Cryo H2 Supply 97 2 194 2 194 2 194 AAP

(Tank only)
Cryo 02 Supply 138 2 276 2 276 2 276 AAP

(Tank only)
Battery (Emerg.) 62 2 124 2 124 2 124 2 124 Agena

A.C. Generator- 40 3 120 3 120 3 120 3 120 Mod. S-3A

Subtota). I 244 0608 1,608 1,608

TOTAL _ 2,332 3,696 3,696 3,696 _ 1



Table 2.2-38D M!AERK I ORBITLm AVIONICS BASELINE EQUTFiSET LIST

FHFK FVF Man FVF Unman Oper

Unit Total Program
Displays and Controls Wt. Total Total Total Total Progr

SJai nCent (ibs) Quan. Wt. Quan. Wt. Quan. Wt. Quan. Wt. Source

i Eyebrow/Overhead Panel:

;ngine Fire Control Panels 8.0 8.0 1 8.0 1 8.8. 1 8.0 L-0l11

EC/LS Gas Supply Override 22.3 1 22.3 - - 22.3 1 22.3

Valves

Elect hw:r Generation pnd 6.9 1 6.9 1 6.9 16.9 1 69 -

Dist

Elevon Disable 2.5 2.5 1. 2.5 1 2.5 1 2.5 -

Rudder Disable 2.8 2.8 1 2.8 1 2.8 1 2.8 -

SAS, Pitch, ATS, and Trim 3.9 1 3.9 1 3.9 1 3.9 1 3.9 L-10ll

S nler Controls

F A ntiskid Controls 2.3 2.3 1 2.3 1 2.3 1 2.3 L-l0ll

00 19.-1011
Sensor Heat Controls 1.9 1.9 1.9 1 1.9 1 1.9 L-lOl1

PFCS Mon, Rudder and Elevon 3.2 1 3.2 1 3.2 1 3.2 1 3.2 L-1011

aner Controls

Engine Start 2.4 1 2.4 1 2.4 1 2.4 1 2.4 L-1011

APU Engine Controls 4.7 1 4.7 1 4.7 1 4.7 1 4.7 -

Cabin Lights 2.0 1 2.0 1 2.0 1 2.0 1 2.0 L-1011

Mission Timer 2.5 1 2.5 1 2.5 1 2.5 1 2.5 CM or LM

Event Timer 1.9 1 1.9 1 1.9 1 1.9 1 1.9 CM or IM

Exterior Lights 2.8 I 2.8 1 2.8 1 2.8 1 2.8 L-1011

Rudder Limiter 2.1 1 2.1 1 2.1 1 2.1 1 2.1 L-1011

Sub-Total 40.90 72.20 72.20 72.20j



Table 2.2-38D MARK I ORBITER AVIONICS BASELINE EQUIPMENT LIST

FHF FVF Man FVF Unman Ope r

Unit

Displays and Controls Wt. Total Total Total Total Program

Eauipment (cont'd) (ibs) Quan. Wt. Quan. Wt. Quan. Wt. Quan. Wt. Source

iMain Instrument Panel:

Flight Attitude Indicator 6.94 2 13.88 2 13.88 2 13.88 2 13.88 S-3A

Horizontal Situation 8.0 2 16.00 2 16.00 2 16.00 2 16.00 S-3A

Indicator
Aero Surface Indicator 2.25 2 4.50 2 4.50 2 4.50 2 4.50 L-1011

AFCS Modes 2.75 2 3.50 2 3.50 2 3.50 2 3.50 L-1011

AFCS Warsing 1.88 2 3.76 2 3.76 2 3.76 2 3.76 L-1011

Instr Warging 1.88 2 3.76 2 3.76 2 3.76 2 3.76 L-1011

Autopilot/Land 20.2 1 20.2 1 20.2 1 20.2 1 20.2 L-1011

Meter - Airspeed/Mach/aC 8.2 2 16.4 2 16.4 2 16.4 2 16.4 C-5A

!z Meter - Altitude/Vertical 8.2 2 16.4 2 16.4 2 16.4 2 16.4 C-5A

S Speed

! Altimeter 3.0 2 6.0 2 6.0 2 6.0 2 6.0 S-3A

0 True Airspeed Indicator 1.5 2 3.0 2 3.0 2 3.0 2 3.0 S-3A

Altitude Indicator 1.5 2 3.0 2 3.0 2 3.0 2 3.0 S-3A

Multi-Purpose Keyboard 22.0 - - 2 44.0 2 44.0 2 44.0 S-3A

Engine Gimbal Override 1.95, - - 2 3.90 2 3.90 2 3.90 CM

RCS Control Override 2.75 - - 2 5.50 2 5.50 2 5.50 -

Main/OMS Override 1.20 - - 2 2.40 2 2.40 2 2.40 -

Tank Jettison Override 1.90 - - 2 3.80 2 3.80 2 3.80 -

Abort 1.10 2 2.20 2 2.20 2 2.20 2 2.20 -

Instr Brightness Control 0.75 2 1.50 2 1.50 2 1.50 2 1.50 -

Caution and Warning Test 1.10 2 2.20 2 2.20 2 2.20 2 2.20 -

Panel
Booster Status Panel 2.90 - - 2 5.80 2 5.80 2 5.80 -

Master System Caution 2.97 2 5.94 2 5.94 2 5.94 2 5.94 -

and Warning
ulti-Function Crt 63.0 - - 2 126.0 2 126.0 2 126.0 S-3A

(Flight Management)
Flight Mode Indicator 2.80 2 5.60 2 5.60 2 5.60 2 5.60 -

Multi-Function Crt 63.0 - - 1 63.0 1 63.0 1 63.0 S-3A

(Subsystems)



Unit Total Total Program

Displays and Controls 'Wt. t at. Quan Wt. Source

Equipment (cont' d) (1bs) Quan. Wt. Qat. Quan. Wt. uan. Wt. Source

main instrument Pane. (cont'd):
, .5,6.2

Engine/Propulsion Displays 1.2 9,6,2 104.1 9,6,2 104.1 9,6,2 104.1 16 99.2

Fvgine/Propulsion Displays 6.2 12 74.4 12 74.4 12 74. - -

IMode Select (Main/0MS/ABES) 1.1 2 2.2 -

Mode Select (RCS/APU) 1.1 .22.2 2 2 2.2 2 L-1011

Area Nay - Growth (63) - - - 2 6.0 2 6. C-5A

Throttle uads, Speed 38.0 2 76.0 2 76.0 2 76.0 2 76.0

Brake & Elevons Cntrol 1.1 1 1.1 1 1.1 1 C-5A

NABES Controls 1.1 1 6 26 -
N Panel 2.6 2.6 2.6 2

Landing Gear Controls 4.2 1 4.2 1 4.2 1 4.2 1 4.2 C-5A

:mer Landing Gear Extension 1.5 1 1.5 1 1.5 1 1.5 C-5A

S Controls2.0 .2. 1 2.0 1 2.0 1 2.0 C-5A

ATC Panel 14.0 1 14.0 1 14.o S-3A

Communications Panel 14.0 1 14.0 .9 3.9 1 140 S-3

EngiC Start 9 .9 2.9 i 2.9 1 2.9 C-5A

Engine Start 16.o 2 16.o CM

Attitude Hand Controller 8.0 2 16.0 2 16.0 2 16.0 2 16.4 CM

Translation Controller 8.2 2 16.4 2 16.4 2 16.4 2 16.4 -

C&w Annunicators .6 2 1.2 12 1.2 2 1.2 2 11.24

Sub-Total 458.54 724.54 724.54 645.24

I-



Table 2.2-38D

MARK I ORBITER AVIONICS BASELINE EQUIPMENT LIST

r
FHF FVF Man FVF Unman Oper

T Displays and Controls Unit Wt. Total Total Total Total Program

m Equipment, (lbs) Quan. Wt. Quan. Wt. Quan. Wt. Quan. Wt. Source

o 12 2 2
Sys Engr Panel - 8.3 ft 189 8,3 ft 189 8.3 ft 189 0 0

CRT 63 1 63 1 63 1 63 0 0

252 252 252 0

m
TOTAL 751.44 1048.74 1048.44 717.44

0

IT-
rj

r



Table 2.2-38E MARK I ORBITER AVIONICS BASELINE EQUIPNT LIST

FHF FVF Man FVF Unman o

Unit
Wit Total Total Total Total Program

W+ W+. ", o u rcWe

Digital Computer 255 1 255 1 2 255 255 1 255 S-3A

Drumn Storage 70 1 70 1 70 1 70 1 70 S-3A

Dig. Mag. Tape 20 2 40 2 40 2 40 2 40 S-3A

Display Gen. Unit 80 1 80 1 80 1 80 1 80 S-3A

Comm , SIU 40 1 40 1 0 40 1 40 S-3A

Instr. SIU 10 1 10 1 10 1 10 1 10 S-3A

'c S iU 80 1 80 1 80 1 80 S-3A

ELS SIU 15 1 15 1 15 1 15 1 15 S-3A

El. Power SIU 15 1 5 1 15 1 15 1 15 s-3A

B ooster SIU 30 1 30 1 30 1 30 S-3A

CSE/LCC SIU 030 1 30 1 30 S-3A

TOTAL 555 665 665 665

o>



Table 2.2-38F MARK i ORBITER AVIONICS BASELINE EQUIPMENT LIST

FHF FVF Man FVF Unman Oper

Unit

Instrumentation Wt. Total Total Total Total Program

EquLipment (ibs) Quan. Wt. Quan. Wt. Quan. Wt, Quan. Wt. Source

2.1.6

!Transducers 0.5 290 145 460 230 490 245 280 140

jSig. Cond. & Wire 0.2 730 146 1160 232 1230 246 700 140

Flight Recorder 48 2 96 2 96 2 96 2 96 C-5A

Time Code Gen. 15 1 15 1 15 1 15 C-5A

FiLr Camera 7 17 1 7 1 7 A/C

PCM TLM Equipment 44 1 44 1 44 1 44 Apollo

Fu Wide Band 40 1 40 1 40 1 40 L1011

TOTAL 493 664 693 376

C
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2. 2.2 Electrical Ground Support Equipment

The electrical ground support equipment for the baseline avionics system is required

to support a shuttle system that is composed of an interim, unmanned booster in

conjunction with a 040A Mark I Orbiter that has on-board data management capability.

Avionics on-board checkout, fault isolation, and all abort indications are controlled

and monitored from the oribter. This provides a near-autonomous shuttle operation

during prelaunch checkout and launch activities for the avionics system.

To support the baseline avionics system, it is proposed to modify and utilize existing

facilities and electrical ground support equipment (EGSE) located at Kennedy Space

Center. These facilities and equipment together will provide the necessary means

to refurbish, maintain, checkout and launch the shuttle avionics system.

2, 2. 2. 1 Checkout and Maintenance. Complete avionics subsystem checkout and fault

isolation are performed with the on-board checkout system; the basic philosophy of

maintenance is "on demand", i. e., replacing units only when malfunctioning. This

concept is viable because of real time checkout on-board during all mission phases and

allows the line replaceable units (LRU) to be immediately dispatched to their respective

subsystem laboratories after landing, where detailed and positive fault isolation

takesplace on automatic test equipment. Those problems external to line replaceable

units require additional on-board trouble-shooting conducted by utilizing carry-on

equipment such as VTVMs, oscilloscopes, etc. presently in inventory at KSC.

Electrical ground support equipment, to satisfy the peculiar bench checkout requirements

of each subsystem and LRV, will be maintained in dedicated laboratories in the MSOB.

Each dedicated subsystem laboratory is in turn connected to a common computer

controlled test equipment complex by way of a data switching unit, all within the MSOB.

Each subsystem laboratory after establishing the necessary soft-ware test routines,

can conduct checkout and fault isolation to the replaceable module on any of the

laboratory line replaceable units.
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The existing GE computer complex consists of a general purpose computer, memory

unit, input/output console, mag-tape transports, teletypewriter, tape reader, and

tape punch to which will be added a data switching unit interconnected to stimulus and

measurement equipment sections (created from existing test hardware). The resultant

test tool is identical in function to the versatile avionics system test concept used

for shipboard support of the S-3A avionics.

The data switching unit is the communications element in the total test interface. It

enables the automatic test equipment operator to exercise supervisory or direct control

of the test program, monitor subsystem laboratory requests for support in real time

(shared), and select the modes of operation. The computer, acting through the data

switching unit monitors, controls, and synchronizes all data and instruction transfers

between common test equipment and the user subsystem laboratories.

To accommodate the on-board system certification of newly installed components,

the Launch Control Center is connected into a data link terminal that is located in

each orbiter and booster cell in the Vertical Assembly Building. This allows final

system certification of each vehicle prior to vertical assembly on the mobile launcher.

2.2. 2. 2 System Checkout and Launch. The total shuttle system, composed of the

booster, tank, and orbiter, is assembled in the Vertical Assembly Building on the

platform of the mobile launcher. The orbiter DMS system is then connected to the

Launch Control Center (through the GSE SIU) by way of a high speed data link

transmission line; voice communications and external power are through other

electrical connectors. This puts the LCC computer and the ML computer in contact

with the on-board data management system and prepares the vehicle and facility for

integrated systems checkout and simulated flight tests. Checkout is initiated and

monitored from the orbiter cockpit with the on-board data management system

calling up the necessary test routines and monitoring the test and data responses

under GSE cueing. System test is controlled from the ground test center in the LCC.
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When integrated checkout and simulated flight tests are complete, the mobile launcher

and shuttle are moved to the launch site and installed on the launch pad. Identical

electrical and data link connections are made and the same computer-controlled automatic

checkout of the shuttle avionics is performed.

The computer complex that supports this phase of the operation is composed of two

general purpose computers and their peripheral equipment. One computer is located

in the Launch Control Complex while the other is stationed in the base of the mobile

launcher. Both computers are RCA-11OAs and are connected in tandem to perform their
system support functions. Fueling is controlled independently of the avionics support

and is not considered in this study. Existing peripheral equipment includes a line

printer, card reader, card punch, paper tape reader, tape punch, mag tape transports,
and digital display equipment.

2.2.2.3 Integrated Test Facility (ITF). Components of the shuttle avionics system
that are not repairable at the launch operations facility are sent to an integrated test
facility for depot-level maintenance. This facility (Fig. 2.2-60) is the existing S-3A

ITF modified for shuttle compatibility and has the capability of complete component

repair and also total system checkout with respect to any individual component. The
facility consists of three supporting elements.

o Integration Bench Setup (IBS)

o Integration Test Facility (ITF)

o Laboratory Computer Facility (LCF)

The IBS contains the necessary equipment to repair and checkout the individual

avionics components. This includes the work benches, hand tools, simulators,
and mechanical and electrical lab equipment associated with shuttle avionics.
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Fig. 2.2-60 Integrated Test Facility/Integrated Test System
Rye Canyon Bldg. 229

The ITF houses the physical mockup of the avionics system. Each repaired

component is installed in the mockup and subjected to an integrated systems

test.

The LCF contains the computer system and all of its peripheral equipment to

support the integrated system run that is conducted in the adjacent ITF.
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2.2.2.4 Mission Suppor. During the development phase of the program, the use of

the existing Mission Control Center (MCC) modified for SSV support and an earth

based tracking network will be required for shuttle operation. It can be seen

(Fig. 2.2-61) that as the program progresses from the development phase through the

early operational phase to the more mature operational phase, fewer active stations

will be required to support the orbiter and its operations (reference EM L4-02-05-04-MI-1

SGLS Coverage by Ground Station - 100 nm Polar Orbit).

Each station in the network is assumed to be selected specifically to support the

shuttle operation. Emergency voice contact to MCC is asstuned to be available

at any time through the Air Force tracking network.

78 79 80 81 82 83 84 85 86 91

NETWORK D EN K I

NET PREPS ACTIVE FOR I -I .
FVF FTV-I MARK I OPERATIONS _ IlV-I tA, II

FTV-2 MK I OPERATIONS FTV-2 MK II

PV-I MK II

PV-2 M, itI 1
ALL MISSION SUPPORT I p--3 MK II

KAENA GAP TIME 2 HR

GUAM

CORPUS CHRISTI ALL MISSIONS SUPPORT

VANDENBERG GAP TIME vi 4 HR

ASCENSION EMERGENCY ONLY

KSC 
GAP TIME n 12 HR

50% MCC STAFFING
66% MCC STAFFING

MCC FULL PCC STAFFING 6

DEVELOPMENT EARLY OPERATIONAL MATURE

Fig. 2.2-61 040A Avionics Baseline - Orbital Support
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2.2.3 Software

The principal implications of the selected avionics hardware baseline on shuttle software

definition and development may be summarized as follows:

o The extensive adoption of S-3A data management subsystem features offers

a high degree of commonality between shuttle software needs and those

currently existing or under prior development within the Federal Government

inventory.

o Flexible (CRT/KEYSET) man interface and DMS highspeed, digital access

to all LRUs without resort to a complex data bus and offers straightforward

economical methods of addressing shuttle-unique, combined aircraft-spacecraft

instrumentation/checkout/control problems.

o Compatible ground software development facilities necessary for support of

early contractor simulation, development, and integration of orbiter mission

software already exist so that short-term expenditures for new development

are minimal.

In effect, the selected avionics baseline has been drawn from a maximum S-3A applica-

tion alternative and, with respect to shuttle software in particular, the original alternate

objective remains intact.

To the extent that the above implications are realizable, the possibility exists for the

shuttle software program to gain the most capable, proven system contemporarily

available at a cost competitive with the least-capable system tailored to a minimum,

shuttle-peculiar requirement. This possibility is the principal motivation behind the

functions, structure, and segmentation of the Mark I shuttle software baseline as

described below.

2.2.3.1 Functional vs ChronoTogical Analysis Summary. Assuming an application

of S-3A software concepts to at least an aircraft-dedicated configuration for early

horizontal flight, it is of interest to show:

a. That all functional requirements are met
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b. By what sensible manner the configuration might be progressively updated

to achieve a satisfactory Mark I/Mark II orbital capability.

c. How this approach compares with other possible approaches.

To determine a maximum application, it is, of course, necessary to relate shuttle

functional requirements to specific capabilities of the existing S-3A avionics system.

Further, it is necessary that functions (or capabilities) be prioritized in a manner

that facilitiates proper differentiation with respect to relative importance and logical

order of development.

2.2.3.1.1 Functional Analysis Approach. As a part of the overall alternate avionics

concept study, a detailed functional analysis resulted in the consideration of three

possible variations of functional capability for Mark I orbiter avionics based on the

following categorization:

a. SAFE. This variation is a "barebones" approach which yields a safe,

acceptable Mark I configuration at absolute minimum cost, but with some

sacrifice in mission success probability. All functions and features assigned

a "safety of flight" (SOF) criticality (Rank 1) are included. This variation

does not support all functions and features assigned a "mission success"

(MS) criticality (Rank 2).

b. Mission Success. All functions and features assigned either an SOF or

MS level of criticality (Rank 1 or Rank 2) are included. This variation

is predicated on achieving a high probability of Mark I mission success, but

does not include functions and features dedicated to growth and improved

.adapability for early Mark II development testing and evaluation.

c. Improved Capability. All functions and features considered technically

justifiable for a full-i^Iapability Mark I avionics system are included.

Software-oriented, major functional capabilities categorized in this manner by avionics

subsystem are given in Table 2,2-39. Capabilities are cumulative in going from one

variation to the next such that the "improved capability" variation includes all

functions in the table.
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Table 2.2-39

MARK I FUNCTIONAL ANALYSIS SUMMARY

CONTROL DATA MGT
AND GN&C COMMAND ELECTRICAL INSTRUMENTATION AND

DISPLAYS TRACKING POWER SOFTWARE 2 3 4

CONFIGURATION AT/HODG REF VOICE R.DAR DC SOUCE OFf (HFT) HARPDWI)ED
CHECKLIST AND INTERCOM MASTER SEQ.

RADAR ALT AC SOL CI SIG COND CONTROL
I4ARDWIRED TM DOWNLINK AND TM LOGIC UNIT
ANNUNICIATORS CAD~ DIST AND INTERFACE

SA HARDWRD TACAN L CONTROL FLIGH EC
SWITCH CONTROLS .C MAND LPLINKR

SENSOR-D0IVEN INSAUTO-ADORT

1 1 / GUID COMPUTER

SIU-DRIVEN A/C AND S/C DMS/SIUC/O, DMS/IUC/O, TIMING SUS GEN. PLRPOSE
ANNUNCIATORS AUTOPILOTS MON., MODE MON., MODE COMPUTER

CON tTROL CONROL DIS/SIU C/OI
SIU-PROCESSED ONSOARD UPDATE MO ., OTODE ON6OARD C/O

MISSION SWITCIH CONTRI ORB ALTIMETER SEARCH RADAR CONTAOL SYl MGT

SICCESS AUTO PILOT - EVA CREW TO ANALO TA
DRIVEN FLIGT DMS/SIU C/O. MON VEHICLE 10 GRD REC ANTENNA/OPTICS
INSTRUVMENTS MODE CONTROL VOICE/DATAOSONING

HARDWIE GNC ILS
CRT DISPLAY

P'OGRAOM.ABLfE DMS/SU GUID VEK/DETACH DM/SI1U POWER GN&C
CRT DISPLAY (INCLUDING MODULE VOICE MANAGEMENT COMPUTATION
AND CONTOL ItENDEZVOLS AND DATA

IMPROVED AN MISSION
CAPACIUTY S-BAND MSFN CONTROL

DOCVING SEN50' VOICF/DATA
CALL-UP
CATALOO

,c =- EHFT 2 EVFT 3= LVFT 4 = M9I

The "safe" variation, while perhaps presenting the least cost and complexity for

orbiter avionics does not present an acceptable level of mission success probability

and is greatly dependent upon extensive onboard hard instrumentation and ground

systems tie-in for both checkout and operations. The "mission success" level of

capability greatly reduces data point instrumentation and ground dependency, but is

relatively limited in terms of suitability for extended missions and expanded payloads

capabilities. The "improved capability," while technically justifiable in the long run,
may present too great a cost and complexity.

Comparing current S-3A software-supported avionics capabilities with those indicated

in Table 2.2-39 leads to the conclusion that a maximum application would generally

result in an "improved capability" level in all subsystem areas, especially so in

controls and displays and data management. If such an application proves as cost-

effective or more cost-effective than other possible approaches offering less capability,
then the major question would be whether or not the relative complexity of the approach

increases or lowers program risks. This question leads to a look at the chronological

aspects of shuttle development in the light of related previous experience.
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2.2.3. 1.2 Effects of Progressive Development. From the viewpoint of minimizing

program risks, a progressive approach to shuttle development might well initially

target on a set of paths (as depicted in Table 2. 2-39) for a four-step, incremental

development. There are, of course, problems to be reckoned with in such an event,

namely, how to avoid: (1) costly onboard (early) instrumentation and ground systems

development that might ultimately prove wasteful or too expensive to maintain, and

(2) crippling constraints on upgrading avionics designs due to unforeseen costly retrofits.

Without proper end-point planning, lower short-term risks gained by keeping the con-

figuration simple for earlier development phases can result in much greater risks later

in the program.

From the viewpoint of initial hardware/software design for an early horizontal flight

test (FTV-1) configuration, requirements are necessarily influenced by ultimate

program objectives with respect to: (1) systems development test and integration,

(2) operational concepts of onboard checkout/monitoring and ground maintenance, and

(3) operational reliability and redundancy.

The selected Mark I avionics baseline viewed in the light of these considerations suggests

a reasonable set of end-point constraints for bounding early equipment and software

specifications, namely:

o The ultimate shuttle orbiter avionics will be a moderately integrated

system.

o All subsystems will, to the individual LRU level, provide:

1. A BITE-based capability for onboard DMS checkout and in-flight

performance monitoring

2. A built-in test capability consistent with an automatic test equipment

ground maintenance philosophy.

o All subsystems will provide a standard interface tie-in with the DMS for

purpioses of BITE logic access and for in-flight monitoring of equipment

mode/configuration status. This standard interface will conform to the S-3A

DMS input/output communications scheme, which employs a serial, 6 MHz,

biphase -Manchester-coded, duplex interface.
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o Where complexity of subsystem redundancy and functions warrant, the DMS

subsystem interface unit (SIU) will provide the capability for remote, integrated

control (via DMS programmable keyset) of subsystem configuration and modes

so as to provide:

1. Minimum essential flexibilities for integration/verification/

.maintenance testing without requiring extensive use of special

test equipment.

2. Automatic sequencing for DMS directed go-no/go checkout prior

to flight and during extended stationkeeping operations on orbit.

It is important that this latter capability of DMS (or automatic test equipment)

programmable control of subsystem configurations and modes is well justified for test

purposes alone and does not necessarily imply crew-dependence upon this method of

subsystem control during flight operations. Past experience in this regard fully supports

this position in that: (1) the amount of special test equipment (and vendor involvement)

required during integration testing can be held to cost-effective levels, and (2) the

extensive variations in software/hardware configurations and modes necessary for

in-depth verification testing are readily programmed and implemented without resort

to lengthy and tedious procedures or the involvement of large numbers of support

personnel and special test equipment.

The ultimate method of assuring an adequate level of operational reliability must also

influence early hardware/software design. If the ability for flexible, software

(keyset-DMS) control of subsystem equipment operations is already justified for test

purposes, then this available feature of the system becomes an important consideration

in providing essential redundancy and sharing of resourses. In effect, the integrated

controls, displays, DMS computer, and SIU tie-in with the LRUs constitute a software

path for the crew to manage and control the system. Subsystem-dedicated redundancy

above the LRU level, then, need not be duplicated to provide fail-safe operations or

triplicated to provide fail-operational. In the case of mission critical functions of

GN&C (see Fig. 2.2-62), the dedicated processor provides a crew-control path that is

completely paralleled by DMS and manual modes and need not be duplicated to provide

fail-operational capability. The same applies to other subsystems as well, such that
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Fig. 2.2-62 Computer System Multipath Control Concept for Mark I Baseline

considerable quantities of equipment, which might otherwise require parallel redundancy,

may be safely left out of the system by providing the crew with the minimum software

and keyset controls to accomplish the same functions via the DMS. The diagram of

Fig. 2.2-62 can be drawn for each of the major subsystems to reflect this type of

multipath redundancy, as appropriate.

In conjunction with early horizontal and vertical flight testing, substantial development
-Ch

instrumentation that will not carry over into operational use will be required. As a

combined aircraft/spacecraft, even the operational instrumentation problem will be

much more severe than in previous systems. The number and variety of transducers,

cables, signal conditioners, indicators, and control switches is linely to be prohibitive

to the point where conventional, parallel hardwire approaches to data/control point

instrumentation cannot be tolerated. Again, the BITE/MODE monitoring and controls

available via the DMS/SIU/LRU route offer advantages. Temporary overlay, develop-

ment flight instrumentation can be held to a minimum and the amount of parallel,

hardwired indicator and control panels can be kept at tolerable levels.
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The programmable displays and controls can be effectively utilized for selected mon-

itoring of both graphic and discrete parameters, depending on current test flight

emphasis and suspect areas. Limit checking and formatting for down-link PCM te-

lemetry is then accommodated by the DMS software. Again, the potential perturbating

effects on component design due to early versus end-point configuration requirements

are significantly alleviated.

These and other considerations affecting the degree of ground equipment/support

dependency, flexibilities for test, redundancy, growth and interface control, and

overall program development/operational costs greatly influence the choice of interim

avionics configurations and associated software capabilities leading to an effective

Mark I end-point capability.

2.2.3. 1. 3 Functional Baseline and Effectivity. The selected functional baseline for

Mark I data management software is depicted in Fig. 2. 2-63. Function effectivity

versus interim Mark I configurations is shown in Table 2.2-40 suggested by Fig. 2.2-64,

primary-mode mission critical GN&C compuitations are provided for by software

residing in the subsystem-dedicated computer.

Data management software effectivity for HFT does not include functions peculiar to

orbital operations per se; however, programmable displays and controls and on-board

software capabilities are in keeping with the preceding functional analysis and the

principal objectives listed below.

o Provide for flexible and extensive test and checkout capability for each

subsystem to the individual LRU level

o Provide early hardwire-independent crew monitoring and control of sub-

system operations

o Permit alleviation of early, parallel instrumentation/control overlay

problem

Adequate time spans for implementation of these objectives are readily accommodated

with low risk to the program, since mnost of the avionic equipment required for HF'T is

compatible with existing software providing these same functions for S-3A.
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Fig. 2.2-63 Shuttle DMS Software Functions - Mviark I Baseline

Table 2.2-40

MARK I BASELINE SOFTWARE FUNCTIONS EFFECTIVITY

MARK I

FUNCTIONS HFT VFT OP'L
ONBOARD COfFI AND DATA EXTRACTION 0 o o
AIRCRAFT INSTRUMENTATION AND
COMMUNICATIONS PROCESSING AND CONTROL 0 0 0
AVIONICS SUBSYSTEMS PERFORMANCE
AND MONITORING AND SELECTIVE CONTROL o o
GN&C COMPUTATIONS o o
SPACECRAFT INSTRUMENTATlON AND
COMMUNICATIONS PROCESSING AND CONTROL o o
SYSTEM MANAGEMENT Al DS o o
AVIONICS CONFIGURATION CONTROL o

CONSUMABLES MANAGEMENT 0

RENDEZVOUS COMPUTATION 0
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Fig. 2.2-64 Mark I Baseline Software Configuration

For VFT, GN&C software is added for mission critical spacecraft control functions.

Programs residing in this dedicated, single-CPU version of the 1832 computer provide

a DMS-independent capability for all computations and command generation necessary

for both on-board autonomy and command uplink control of flight path under crew

supervision. In addition, DMS software functions are expanded to include the following:

o GN&C backup

o Spacecraft communications processing and control

o System management aids

1. Electrical poer control

2. Environmental control

3. Alternate plans

4. Degraded-mode recovery
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During late HFT and prior to Mark I operational missions, the DMS software is further

updated to include all functions called for in Fig. 2.2-64. This end-point Mark I soft-

ware configuration has been sized in accordance with the following objectives:

o Full utilization of the moderately sized DMS for assisting the crew in

managing the non-flight-critical functions of the combined system, including

a high degree of on-board autonomy for OBCOFIRM. Crew-elective uti-

lization of the available DMS OSCOFIRM access to subsystem path for

monitoring and control of critical subsystem functions.

o Restriction to proven needs and a manageable degree of sophistication

versus time.

2.2.3. 1.4 Orbiter Baseline Impact on Ground Support Software. The extensive on-

board autonomy features of the baseline configuration considerably lessens the degree

of early sophistication and criticality of direct support software needed on the ground.

This is true regardless of whether early vertical flight tests are manned or unmanned,

although the latter alternative would significantly increase the degree to which software

would be pacing overall shuttle system development.

Functional requirements, sizing, and costing of ground support software are based

on the selection of S-3A, off-the-shelf components, both in the DMS/GN&C areas and

in the subsystem interfaces with the DMS. For this reason, S-3A concepts are gener-

ally adopted for early contractor development, including the automatic test equipment

approach to long-term ground maintenance of major avionics components.

Although the baseline configuration postulates both dual and simplex versions of the

S-3A 1832 computer, other inboad (CP and IOC) elements for these applications

could be readily adapted from comparable, available systems. The S-3A input/output

interface and associated communication scheme is basic to the approach and would

require modification to I/O designs if other machine elements are ultimately selected.

In this connection, it is important to note that use of a higher-order language such as

XCMS-2 is essential where such flexibility is required. Although other higher-order

languages (such as SPL and HAL) may be as well or better suited, the baseline choice
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of XCMS-2 is predicated on: (1) the recent, extensive improvements and large-scale

application to the S-3A and other (AEGIS/RCA and LHA/Litton) Navy operational

command and control systems; and (2) the availability of substantial, readily-applicable

ground support and on-board programs currently supporting the S-3A program.

The consideration of other candidate computer systems will imply the development of

a Code Generator to the UYK-7-hosted, CMS-2 compiling system that will accommodate

object code generation for the selected machine. The creation and insertion of a new

"target machine", object code generator does not represent an uncharted path, since

the CMS-2 system has been constantly expanding in this regard for more than a decade.

Should the final computer selection also require software development in a ground

computational facility other than the one now dedicated to S-3A, modifications would

also be required to the Object Loader Program to ensure compatibility with CMS-2

object output format and conventions. Although much can be written on this subject

based on current S-3A experience and approaches, the nature and potential mnagnitude

of the software problem for the shuttle warrants further study based on a finite set of:

(1) possible trades with respect to the degree of centralized versus decentralized

processing and control of subsystem functions; and (2) candidate computer systems

and programming languages, both ground and vehicle. Because of the wide range of

variables involved, including software support as well as hardware, comparison of

candidate computer systems requires a most careful analysis.

For the selected baseline and associated costing of ground support software, utilization

of existing S-3A programming languages and compilation facilities have been assumed

in order to achieve the lowest cost and risk factors. Alternate costing is also supplied,

wherein other existing, programming launguages (such as HAL) are utilized along with

ground computational facilities other than those presently used on S-3A.

2.2.3.2 Selected Baseline Structure. The selected baseline structure for total shuttle

system software is illustrated in Fig. 2.2-64. Sizing.estimates in thousands of 32-bit

words are given in the parenthesis appearing with each major area. Components

comprising each of these areas are briefly described below.
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2.2.3.2;1 Ground Support Programs. These programs are identifiable with the

following facilities and basic functions:

o Software Development Facility - initially run by contractor and turned

over to NASA for MCC direct support operations prior to FVF. This

facility (as SDF and MCCO provides the means of pre-flight and post-

flight processing of orbiter vehicle tapes as required to support develop-

ment (SIL), flight test, and operational activities (on-board DMS and

GN&C programs). This software includes: (1) compilers, assemblers,

loaders, and necessary SDF operating system utilities; (2) system gener-

ation program as required to build orbiter system tapes for various ground

and in-flight uses; (3) post-mission data reduction program which inter-

faces with on-board data extraction and ground recorded telemetry to

permit mission reconstruction and analysis prior to subsequent flight.

o System Integration Laboratory - initially run by contractor and turned over

to NASA (perhaps as part of MCC) for life-cycle-sustaining development

support operations prior to first production vehicle flight. This facility

(as contractor -maintained SIL) provides: (1) necessary power, cooling,

cabling, special test equipments, and physical mock-ups for component-,

subsystem-, and system-level avionics'test aid integration; (2) develop-

ment tool, integration test programs for each avionics subsystem as re-

quired for initial, laboratory-peculiar bench and integration levels of

hardware testing; (3) an S-3A level of on-line, avionics equipment simu-

lation capability; (4) a system test and early flight test data reduction pro-

gram for use in contractor development-phase evaluations. This facility

will have a dedicated laboratory computer facility (LCF) and computer

interface unit (CIU) for-direct on-line tie-in with on-board computers (DMS

and GN&C) for purposes of avionics equipment simulation and stimulation

under software and manual (keyboard) control. The necessary operations

system and utilities software for the LCF are also included in the total

shuttle system software estimates.

o Launch Control Complex - facilities for avionics-associated pre-launch

checks and countdown related voice/data interfaces with on-board
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instrumentation, communications, GN&C, and DMS subsystems. The

shuttle-peculiar software for use at this facility is developed by the con-

tractor in cooperation with and at NASA-Kennedy. All necessary develop-

ment support computer time and operating system software facilities are

presumed GFE, including languages, compilers, and utilities.

o Systems Development Simulation Facilities - located at NASA, Houston and

devoted to avionics design-phase requirement definition/experimentation.

Simulation software is primarily directed to GN&C functions and will com-

plete model shuttle-peculiar flight control dynamics in conjunction with the

baseline flight computers and associated man/machine interfaces.. For

purposes of sizing and costing, all computer systems, associated support

software, and operations personnel are assumed to be supplied GFM;

however, estimated computer-hour costs are included as required for

contractor development of avionics-related simulation software development.

o Avionics Maintenance Test Facilities; presumably to be located at or near

launch site, are assumed to employ automatic test equipment of the S-3A

VAST type. This integrated maintenance concept for the major avionics

LRU's will require the development of extensive test software for isolating

faults down to pluggable card level. S-3A is currently developing such

software for 65 WRAs (LRU equivalents). For baseline costing, a level

of 80 shuttle avionics LRUs are assumed to be covered by this type of

integrated ground maintenance. As of this writing, these LRUs are not

individually identified and estimates are based on a 1.2 complexity factory

with respect to : imilar S-3A development. Although included for costing

purposes, this software is assumed to be provided GFM and is not treated

explicitly in the baseline software structure.

Direct Support Software. A more detailed description of those components of direct

support software based on existing S-3A capabilities follows. Direct support software

includes all preflight and post flight software systems necessary to develop and

maintain mission software, generate mission software data bases and process the

extracted mission event data.
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o Compiler - Monitor System 2 Extended (XCMS-2) - the extended compiler-

monitor system 2 provides support softwvare services necessary for initial

compilation and maintenance of mission subprograms. The UYK-7 based

XCMS-2 system includes the MS-2 monitor, the CMS-2 compiler, a librarian,

UYK-7 loaders, tape utility routines and a flow charter. The XCMS-2 com-

piler is a three phased language processor that analyzes a users program

and generates absolute or relocatable reentrant object code for the 1832.

The UYK-7 and 1832 computers are instruction-repertoire compatible.

e ULTRA/32 Macro Assembly System - the ULTRA/32 Macro assembly

system for the AN/UYK-7 computer is an independent, self-supporting

software system consisting of an assembler, loader, librarian and utilities

component which operates within the AN/UYK-7 executive environment.

Each component represents an individual product which is interfaced with

a system control program and a centralized input/output program. The

assembler system products operates on the AN/UYK-7 computer and gener-

ates object code lfoi the AN/UYK-7 which is coimpatibe with the 1832

computer.

The Macro assembly system provides support software services necessary

for initial generation and maintenance of operational control subprograms

(executive, initialization and recovery), input/output controller chains,

in-flight performance monitoring subprograms (IFPM and data extraction)

and system common routines.

o Systems Generation (SYS GEN) - system generation is the process that

enables the user to generate an 1832 operational software system tailored

to the specific requirements of an installation by processing a master system

library tape and a s61of installation control cards tuhrough the systems gener-

ation program. The systems generation program design accommodates a

number of independent systems, i.e. , operational program, system readiness

test program, in-flight training program. The end product is a digital mag-

netic tape unit (DMTU) cartridge with the tailored software recorded on

tracks 3 and 5.
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Each systems tape (DMTU cartridge) contains one or more independent

program systems. A selection loader program provides a method for

initiating the loading of any particular system into the 1832 main memorY,

The selection loader and each particular program system loader rcfere.olWs

tables built by SYS GEN for program system location in 1832 main memory

and system segments contained on the systems tape.

Each program system is comprised of one or more segments which conta-i

instructions and/or data. Each of these segments is "built" using output

from one or more ULTRA/32 assemblies and/or XCMS-2 compilations.

The contents of these segments are determined by the specifications input

via the control card deck.

o Preflight Data Insertion - the preflight data insertion program operates

at both the MCC and launch facility. This program generates, formats

and records the mission-peculiar information and specific operational

parameters on DMTU track 7. Preflight data is comprised of two major

categories:

1. Historical Data

2. Modifiable Data

Historical data comprises that data recorded for subsequent use by the

post-flight data reduction program. Hence, historical data items are not

loaded by the operational program loader. Historical data includes the

following:

1. Exercise Name

2. Exercise Phase

3. Operational"Commander

4. Base Designation

5. Month, Day, Year

6. Scheduled Time of Lift-off or Take-off (ZULU)
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Modifiable data includes configuration parameter data which may vary from

mission to mission. The following categories of modifiable data are identified:

1. GN&C Preflight Parameters

2. Communications Link MSFN Participating Unit List Parameters

3. Communication Configuration Parameters

4. Ultra High Frequency CH Frequency Assign Parameters

5. Abort Parameters

o Post-Mission Data Reduction - the post flight data reduction program

operates in the carrier based computer center and reduces, for mission

analysis and reconstruction, the mission event data that are extracted on

DMTU tracks 2, 4 and 6 during a mission by the data extraction subprogram.

Development Test Software. Development test software is associated with contractor

SIL needs during initial avionics integration. Descriptions of the S-3A based programs

included in the baseline configuration are given below.

o Integration Test Programs; before installation of the avionics system in

the orbiter vehicle, each subsystem will be functionally checked as a single

unit, operating in a totally integrated, laboratory environment. To provide

this capability for controlled testing at a subsystem level, a set of integra-

tion test programs are developed to enable the following functional

capabilities.

1. To verify the communication of each subsystem with the DMS 1832

computer

2. To test the functional capabilities of each subsystem by transmitting

commands, by checking I/O, by requesting status words, and by

checking faults which will be reported to the DMS as interrupts

3. To provide sufficient information on-line (display or printout)

to enable the test engineers to analyze hardware and/or software

faults

o Avionic Equipment Simulation System (AESS) - an on-line avionics equipment

simulation capability, employing the LC F 1230 computer system, will include
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dynamics model and device simulation modules for each major subsystem

interfacing with the on-board 1832 computers. These capabilities are

provided to permit: (1) early debugging of software in the 1832 with highly

controlled but simulated avionics hardware interface dynamics (including

fault insertion), (2) continuation of meaningful software integration in the

absence of or malfunction of peripheral avionic equipments, (3) increased

interface dynamics using canned data generation, and (4) increased fault

isolation capability through on-the-spot software simulated test experiments.

An early AESS capability at the contractor SIL is considered essential to

economical verification testing and quality control. Also, this software

system will form the basis for parallel development and support of the

NASA Systems Development Simulation Facilities at Houston.

o Development Test Data Reduction and Analysis Program - the test data

reduction and analysis program (DRAP) will consist of subsystem analysis

programs, written as the need arises. At minimum the basic DRAP will

consist of a chronological print of events, navigational data plots, and data

which is to be stored in a data bank for historical purposes.

o Utility Programs - a minimum SIL-located-1832 operating system utility

package which is peculiar to Shuttle avionics test and integration needs will

consist of the following:

1. Loader

2. Corrector

3. Recorder

4. Debugging aids

5. I/O routines

2.2.3.3 Orbiter Vehicle Software. As shown in Fig. 2.2-64, Orbiter Vehicle Software

consists of those programs whic.h operate in the two 1832 computers included in the

Mark I Avionics Baseline. Since GN&C dedicated functions are also included as "GN&C

backup" under the DMS software hierarchy of Fig. 2.2-65, separate discussion is not

necessary.
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Fig. 2.2-65 Mark I Baseline DMS Sofitware Configuration

Data management subsystem software is divided into System Test (OBCOFIRM) and

Operational Programs.

2.2.3.3.1 System Test Programs. As part of the on-board software, System Test

Programs are required to establish the operational readiness of the Orbiter avionics

system during preflight and to provide a capability to isolate system failures to a

LRU level. To meet these requirements, a set of System Readiness Test (SRT)

subprograms and a set of Diagnostic Test (DT) subprograms are provided. These

programs operate under a test controller program that is independent of the normal

operational system executive. A brief description of the functional requirements for

the SRT and subprograms is given below.

o System Readiness Test Subprograms -The SRT subprograms are designed

for operation during prelaunch and will consist of tests that enable the

go-no/go status determination of each DMS interfacing subsystem. Upon

detection of a no/go status each SRT shall exit to the System Test ControlJr
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to provide an operator option for the selection of appropriate dianostics to

enable isolation of an occurring fault to a LRU level.

o Diagnostic Test Subprograms - The DT subprograms are designed to detect

and isolate system malfunctions to the non-ambiguous LRU within each

avionics subsystem that interfaces with the DMS. In some subsystems,

isolation to the quick replaceable assembly (QRA) is provided. DT sub-

programs will consist of several test routines and, where applicable,

arranged in a unique order or sequence. The DT subprogram will isolate

the malfunctions within each avionics subsystem by having the DMS test

the operational functions, initiate active BITE circuitry, or cue the operator

via the MPD to initiate manual BITE circuitry. The DT subprograms are

capable of providing amplified, plain language information to the crew

regarding functional capabilities remaining and may be selectively utilized

during extended orbit operations to determine and implement appropriate

degraded submodes available within operational software and equipment

provisions.

2.2.3.3.2 Operational Programs. Orbiter Operational Programs include all

instructions and data executable on or used by the DMS 1832 in performing the Shuttle

mission. This software initially resides on the Digital Mlagnetic Tape Units (DMTU)

and is loaded into main memory and onto magnetic drum storage (MDS) for execution

during various phases of the mission. The three general types of subprograms com-

prising the Operation Programs are: Common Control and Services, Subsystems

Operations Support, and System Management Aids. Brief descriptions of these pro-

grams are given below.

Common Control and Services. The programs, as listed in Fig. 2.2-65, consist

of the following:

o EXEC. The Executive, Initialization and Recovery Subprograms consist

of those routines which direct and coordinate the operation of DMS task-

state programs, initialize the operating system (hardware and software)
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f-~F 4rt-up, and provide for the reinitialization of the operating system

diy: ?: he ASW mission operation. Major executive components include

te ;::l oiw.ving:

. Scheduling Component - Schedules tasks (task mission subprogram

tasks) for subsequent priority ordered execution.

. Dispatcher Component - Selects the highest priority task awaiting

execution, establishes its operating enviromnent, and releases

control to the selected task.

~. Retrieval-Allocation Components - Obtains task mission sub-

programs and data, as required, from the drum and dynamically

allocates core memory to the retrieved task.

4. Interrupt Component - Provides default or processing options for

various equipment and software conditions. Provides entrance

and control for Input/Output operations and Executive Service

Requests (ESRs).

d, Executive Service Request Component - Enables subprogram tasks

to gain the attention of the executive to provide for communication

between tasks, initiation of input/output operation, scheduling of

other tasks, and activation of various executive service functions.

, Centralized Input/Output Component - Provides queuing for device

and channel requests, reduction of monitor interrupts, wait/no-wait

and scheduling of other task options, and a framework of control

for subsystem errors.

r/, Initialization and Recovery Subprogram - The initialization com-

ponent of thInitialization and Recovery Subprogram provides for

initialization of both hardware (1832 and all interfacing subsystems)

and associated software upon initial system load, operator request,

or as a result of system recovery.

o00 bisplay. The CRT display program processes data to be presented to

,,, ,:'ew in symbolic form. All data presentations are categorized into
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one of two general types: either data presentation in the form of alpha-

numeric or data presentation in the form of diagrams, graphs or pictorial

video. These two categories of data are referred to as peripheral data

and plot data, respectively. Display control routines are provided for use

by other functional tasks as required, and for manual selection by the dis-

play operator. Display operator control functions are assigned to pro-

grammable switch matrices which are grouped into several categories.

o Keyset Processing and Control (KEYPAC) - The Keyset Processing and

Control Subprogram services the Integrated Control Subsystem (INCOS)

which provides the crew with the capability of exercising control over the s

system by translating operator decisions and actions into a digital form

for input to the DMS and action by the Mission Subprograms. The function

activation signals are received by the 1832 on an interrupt basis from the

INCOS whenever a switch is depressed.

o In-Flight Performance Monitoring (IFPM) - The IFPM program monitors

the performance of the avionics subsystems throughout the mission and,

upon malfunction detection, identifies the failed subsvstem and informs the

Executive program of this identity. The IFPM program comprises

the following elements:

1. GPDC Self-Test

2. BITE Monitoring and Maintenance System Status Tableau

3. Active BITE Initiation

o Data Extraction (DEP) - The Data Extraction program is responsible for

recording, in a predefined format, data pertinent to the Shuttle mission.

This information is recorded on the DMTU to relieve manual recording

by the crew and to assist in mission reconstruction. Collected mission

data is processed by the Post-Flight Data Reduction Subprogram. At

minimum, the program initiates data extraction at the following times:

1. Initial Inventories and Equipment Status (Tableaux)

2. Periodically to record GN&C flight dynamics parameters

3. Upon the occurrence of a defined event

4. Whenever an operator requests extraction of a displayed tableau.
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o Catalog Procedures/Data Callup - This program provides for storage

and retrieval of text and symbolic data for use by the crew in performing

troubleshooting and mission plalming functions.

2.2.3.3. 3 Subsystem Operations and Support Programs. These programs, as

shown in Fig. 2.2-65, consist of the following:

o GN&C Backup - The GN&C Backup program operating with the Inertial

Navigation System, the Flight Display System, TACAN, Central Air Data

System, Radar Altimeter and other flight sensors to perform the following

functions:

1. Maintains shuttle position in geographic and vehicle reference frames.

2. Maintains a stabilized GN&C backup display upon request.

3. Displays tabular GN&C parameters when invoked.

4. Permits manual entry and modification of GN&C parameters.

5. Calculates and optionally provides steering commands to the Automatic

Flight Control System and Horizontal Situation Indicators. These

commands direct the aircraft to selected geographical points of

reference. This program is constantly operating in real-time but

is invoked only upon failure or degradation of the GN&C computer

system.

o Communications Processing and Control (COMPAC) - The Communication

Processing and Control program provides for a computer-aided operation

of the UHF radios and intercom system. Switching logic for radio sets

and intercom is so mechanized that the operator has the option of complete

manual control or computer-assisted control of voice communications. The

Communication Management functions provide the operator with assistance

in selecting the correct radio frequencies for various flight situations in

accordance with effective communication plans entered -into the program

for each mission. Operating in conjunction with the S-Band Voice/data

lirjk, the Communication Processing and Control Subprogram performs the

decoding and work formatting required to permit the orbiter to communi-

cate via the Link as a picket unit or as a Data Net Control Unit (DNC U).
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o Instrumentation Processing and Control (IPAC). This program provides

for selected data point, limit check processing, and message encoding for

data transmission via the PCM down link.

o Track and Plot. These programs operate independently of the GN&C real-

time backup program to provide optional piloting aids and are drawn from

the GN&C repertoire of available routines which are non-flight-critical.

2.2.3.3.4 System Management Aids. Baseline DMS software functions in this

category consist of the following:

o Abort Caution and Response Cues based on preflight inserted parameters.

Provides preplanned mechanisms for software/hardware reconfiguration

necessary for proper abort procedures

o Electrical Power Management in accordance with preplanned, algorithmic

formulation and sensed power consumption and source status. May be over-

ridden by manual intervention at any time. Also presents manual response

cues at selected breakpoints for crew verification prior to executing configura-

tion changes.

o Environmental Control System. Cautions and alerts. Provides current

inventory data on consumables and preplanned checklist and control

procedures.

o CG Determination. Based on sensed expendables data and/or operator input.

o Redundancy Management. Aids in the form of cautions, alerts, and alternate

reconfigurations available. These aids are based on periodic examination of

the system status table (maintained by IFPM and Executive programs), trend

analysis, and stored information on all possible data and control paths.

o Operations Sequencing. Aids are provided for limited automatic sequencing

of system operations and reconfiguration. Frequent breakpoints for manual

crew verification or override prior to further sequencing.
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2.2.3.4 Development and Integration. A systematic and controlled sequence of soft-

ware development leading to the timely, economical satisfaction of system requirements

is an obvious crucial task of the shuttle program. No facet of systems development in

recent years has received more attention in hindsight than this most difficult task.

For highly integrated systems such as shuttle, software integration becomes nearly

synonomous with systems integration and thus necessitates a corresponding emphasis

on planning and coordination spanning a broad spectrum of technical detail.

This realization was registered in S-3A facilities planning accomplished during the

proposal period and in the preparation for and conduct of the second Software Design

Review. Out of these early and extensive efforts to define the necessary facilities

and capabilities for software integration testing, a compatible set of detailed objectives,

plans and controls were formulated in pursuit of a sure-footed, step-by-step achievement

of the program milestones. An examination of the software integration problem

afforded by this brief study suggest a similar approach for the shuttle.

For the orbiter avionics system, an extensive paralc! flow of design and development

effort threatens to produce a critical bottleneck at integration. Because software,

unlike hardware, must intimately incorporate a total system design at an early stage

and yet be volatile enough at later stages to adjust to discovered component and system

level idiosyncrasies, its development requires a sjecial view of the integration process.

From the viewpoint of software, integration consists of a series of controlled experi-

ments with which to determine what really produces desired results and what does not.

The "debug" process is literally a planned "design tuning" process, hopefully under

laboratory-controlled conditions at all times. Properly considered software test

requirements therefore have a healthy influence on test design and, for the shuttle, must

play the major role in determining the methodology and sequence of testing.

These considerations have been developed in detail by Lockheed Electronics Company

personnel working closely with MSC as is reflected in two recent reports: "Space

Systems Integration Laboratory Development Study," dated October 1971, and "Space

Shuttle Simulation Program Draft Report," dated November 1, 1971.
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In keeping with the facilities descriptions and discussions given in preceding paragraphs,

the baseline software development and integration concepts drawn from this study may

be succinctly described by the diagrams of Figs. 2. 2-66 and 2. 2-67.

2.2.3.5 Conclusions. As a long-life, reusable, multipurpose, combined aircraft/

spacecraft, the shuttle vehicle imposes an unusually high degree of onboard reliability

and complexity in the areas of instrumentation and controls essential for thorough

preflight checkout and in-flight safety. The number of potentially critical data points

and amount of annunciation necessary to cover a reasonable spectrum of "Mission

Success" and "Safe" requirements, when combined with the speed with which the

flight situation can deteriorate, will certainly exceed the human, manual envelope.

Total dependence on hardwired annunciation, manual sequencing and parallel instru-

mentation for data point collection and conditioning for GSE tie-in or downlink telemetry

transmission would result in an unwieldy, costly proliferation of test and status equip-

ments on the one hand, and a massive amount of electrical wiring on the other.

The S-3A concepts and configuration for data management, displays and controls,

and BITE oriented onboard checkout and in--f!ight performance monitoring are especially

well suited to the combined aircraft/spacecraft features of the shuttle vehicle.

As for the disadvantages of a "data bus" in terms of the complexity introduced, it is

stressed that the S-3A DMS/SIU communications scheme is not a "bus" in that it does

not act as a general relay medium for lateral signal communications between many

low-level components in the system and does not, therefore, present a supercritical

path from the viewpoint of flight safety or mission success reliability.

The approach generally abounds with flexibility, yet offers a number of hard and proven

points of departure. To the extent that the DMS and programmable controls/displays

features of S-3A are applied the approach is especially amenable to ground simula-

tion. During the approximate period of two years allowable prior to commitment to

detailed designs for S/C avionics, much could be learned from such simulation in

support of trades analysis and software .requirements definition/development. The
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Fig. 2. 2-67 Shuttle Software Integration
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shortening and removal of overlap of successive development spans avoids difficult

to manage and potentially wasteful periods of heavy peak activity and permits more

careful analysis, both for initial design choices and for later changes necessary to

resolve encountered problems.

Application of the S-3A management experience with large scale, command and control

software/hardware development and integration can also be employed to advantage.

Successfully applied, prime contractor techniques for parallel integration of this type

of multiple vendor/facility activity are worthy of repetition and many of the personnel,

plans, facilities and procedures can be applied in a direct and timely maimer. The

S-3A Software Development Plan, for example, is readily translatable to the shuttle

program. It is suggested that such a translation represents one of the logical next

steps in the further pursuit of this alternative.
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2.3 DELTA IMPACT FOR FIRST VERTICAL FLIGHT - UNMANNED

The delta impact of performing the first vertical flight (unmanned) was determined by

identifying those requirements unique to the unmanned vehicle and, then, estimating

the additional equipment, software, testing, training, and modifications plus schedule

impacts. It was assumed that the unmanned flight would have the same basic complement

of Mark I Orbiter avionics onboard as for the manned flight in order to evaluate equip-

ment performance as well as vehicle performance.

The primary change in requirements is to automate all onboard functions or, as a

minimum, provide for remote control originating from the ground or from a chase plane.

In addition, provisions for monitoring the equipment performance during unmanned

flights will be furnished. Range safety requirements impose the need for a command-

destruct receiver onboard the vehicle.

Automatic control provisions for nonavionic functions (e. g. ABES deployment/start/

propellant control, landing gear deployment, hydraulic power control, time noncritical

redundancy management) and for expanded guidance capability to perform aerodynamics

flight-path steering were estimated to cost $3 million. In addition, another $3 million

cost for TV cameras, video recorders, lighting, and a command-destruct system was

estimated.

Additional software development was estimated as follows:

Orbiter 90K Words for onboard automation

LCC 40K Words for increased checkout

MCC 160K Words for increased monitor/control/data handling

Total 290K Words

A backup "drone control" mo ~, using ground controllers and a chase plane, will incur

additional costs as follows:

Controller training at two stations $16. OM-yr

Chase plane equipment modification $0. 5M

Chase plane operation $0. 3M
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Ten additional two-hour horizontal flights for verification and demonstration of system

operation are estimated to cost an additional $1 million.

The delta cost for first vertical flight (unmanned) is then:

Orbiter equipment $ 6.0M

Software 8.7

Horizontal flight tests 1.0

G round support/installation 5. 9

$21. 6M

No schedule impact is anticipated if the decision to fly unmanned is made at the start

of the program. The design and development of automatic onboard systems can be

performed within the available time span. Additional software development for auto-

matic capability means an earlier program commitment to what otherwise would be a

Mark II capability. Flying unmanned represents a decreased risk to the orbiter crew

but an increased risk to the vehicle and program, since no man is onboard to make

critical real-time decisions in cases of emergency.
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2.4 MARK II AVIONICS SYSTEM

Evolution from the Mark I baseline avionics system to the second generation Mark II

capabilities will involve basic improvements to subsystem performance, safety and

reliability improvements, and expanded software capabilities. Performance and

hardware/software quality improvements applicable to Mark II are currently in progress

as advanced technology developments under various NASA, Department of Defense, and

industry-wide funded programs. These will provide improvements for the Guidance,

Navigation, and Control System (GN&C), Control and Display, Communications and

Tracking, Instrumentation, Electrical Power, and Data Management and Checkout,

Fault Isolation, and Redundancy Management (COFIRM) systems as extensions to the

Mark I baseline. Improvements will reduce the Mark I operating costs sufficiently to

more than pay for the estimated nonrecurring costs for Mark II. This is accomplished

largely by onboard orbiter navigation improvements and the full onboard autonomy of

COFIRM which considerably reduce Mission Control Center and remote ground station

operations and associated costs.

2. 4. 1 Mark II Orbiter Avionics Projection

Projections of the Mark II avionic system changes from the Mark I baseline (Table 2.4-1)

have been confined to within a 40 to 50 percent nonrecurring cost allowance over that of

Mark I. Desired gross subsystem performance and quality improvements were identified

and cost estimates prepared. Similarly, the increased software requirements corre-

sponding primarily to an expanded role for the data management system have been esti-

mated. These investigations show that the desired additions and improvements are well

within the allowable cost growth. Projected cost and schedule impact of the Mark II

avionics system development areviscussed in further detail in the subsequent Section 2. 5.

2.4. 1. 1 Mark II Orbiter Guidance, Navigation, and Control (GN&C). Except for the

automatic docking and rendezvous with uncooperative target requirements, the Mark I

Guidance, Navigation, and Control subsystem meets all space shuttle avionics require-

ments (as defined in MSC 04075B, including autonomous navigation and automatic

approach and landing capabilities).

2.4-1
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Table 2.4-1

MARK II AVIONICS CHANGES

Item Changes

Subsystems

Guidance, Navigation, Improve performance and quality of
and Control (GN&C) equipment; accuracy improvements

reduce ACPS, AV propellant use and
reduces reentry dispersions.

Control and Display Add area navigation/autoland CRT
display.

Communications & Tracking Improve performance and quality of
equipment.

Instrumentation Improve performance and quality of
equipment.

Electrical Power Provide 5000 hour life fuel cell.
Improve performance and quality of
equipment.

Data Management, Checkout, Increase onboard COFIRM for nearly
Fault Isolation & Redundancy complete autonomy for both avionics
Management (COFIRM) and non-avionics.

Software Performance of functional operations
through software instead of hardware
could significantly increase mission
flexibility and decrease change
reaction time.

Greater reliance on software in flight
controls and COFIRM will require
advanced management techlmiques.

Orbiter

Mark I Equipment Deletions Horizon sensor and orbit altimeter.

Tracking Satellite Used to augment navigation.

On-Board Navigation, Data Minimize dependence on ground
Management and COFIRM control and remote stations.
Improvements

Safety/Reliability Improved quality of equipment will
increase probability of mission
success and enhance safety.

More autonomous fault isolation and
redundancy mangement will reduce
crew workload and decrease correc-
tive Iaction .time.
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The Mark II GN&C subsystem as proposed in this study will be changed in the following

areas:

o Equipment will be upgraded to meet space environments and to improve

performance, accuracy, and quality. Redesigning and requalifying equipment
will reduce the avionics equipment imposed requirements for pressurized

equipment bay volume and forced air cooling.

Decreased gyro drifts and accelerometer biases will reduce software and test

requirements and could result in a reduction in propellant loading require-

ments, thus resulting in more accurate guidance and navigational capabilities.
Improved equipment quality will improve crew safety aspects and the probability
of mission success, and operational costs will be reduced. The ability to
reduce failures and increase time between preventative-types of maintenance
will reduce the need for replacement of equipment.

Equipment affected would include the horizon sensor, the inertial measurement

unit (IMU), and the digital computer. The new horizon sensor (such as the

Quantic Model IV) will have an altitude accuracy capability of at least three
times better than the Mark I (Barnes 13-166) unit.

An IMU candidate is the dodecahedron (six-skewed gyro) unit which theoretically
increases the reliability of the IMU system by a factor of ten over a triply
redundant three-axes system. The six-pack will also allow voting by axis for

failures beyond the first, whereas with the triply redundant IMU voting in any
given axis is not possible after the first failure in that axis.

For Mark II vehicles, a fourth-generation computer (such as the Magic 362,
CDC 469 or the GE CP24A) would replace the Univac 1832 machine. (Alter-
natively, a smaller, lighter Univac machine could be employed.) As shown in

tabular form under Section 2, of par. 2.2. 1. 1. 2, significant reduction in weight
and power (about a factor of five) can be achieved. Discussions with the sup-
pliers indicate that the unit cost could also be reduced by one-fifth ($100K vs

$500K). The cost of developing and validating new software, however, would
decrease the price advantage.

o Combining aircraft and spacecraft flight control functions in the digital GN&C

computer would eliminate a significant amount of equipment for use in the
Mark I GN&C system. The primary flight control and automatic flight control

computers (ten in all) could be replaced with simple servo-amplifiers, with
control law computations being digitally performed. The three ACPS and three
thrust vector control. (TVC) electronics packages can be simplified to thruster
drivers (Schmitt triggers and power stage) and servo amplifiers, respectively.
All control logic and coihputations (gain scheduling, deadbands, and compensa-

tion) can be performed in the digital computer.

To offset the reduction of the analog dedicated flight control equipment, at least
one additional level of computer redundancy should be considered.

o Use of tracking satellites to navigate would reduce sensor requirements. The
horizon sensor and orbit altimeter could be eliminated, leaving only the preci-
sion ranging system (range, range rate and line of sight) and a star tracker,
together with an inertial measurement unit (with appropriate redundancies) as

2.4-3
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the -omplete complement of navigational sensors for ascent and orbital use.
TAC-_iN used on Mark I for approach navigation and the scanning beam ILS used
for Landing could also be deleted (or amount of redundancy reduced) through the
use :? the PRS and ground transponders.

o Prc-isions for automatic docking and rendezvous capability with uncooperative
tar'ets could be added; however, these capabilities were not proposed in the
studv: due to a lack of mission definition. Both capabilities could be added by
irc ding radar (either microwave or laser) that exists in various stages of
deviopment today. By the time equipment is required for Mark H, it is
e .nti:ed that lower weight, lower power, multipurpose radar will be available
for -huttle use.

In (each case (except for the addition of automatic docking and uncooperative
talzet rendezvous) the changes proposed for the Mark II program are of an
evc _ationary nature, rather than abrupt changes in concept and capabilities.

2. 4. 1. 2 Cc- munications and Tracking, The area of communications system develop-

ment is par~.iularly in a dynamic stage of growth on an industry-wide basis as a result

of cooperat--e informationally-sponsored satellite and ground communications systems

developmernt and bandwidth limitations facing future operations and high interest in laser

technologyNr. Baseline Apollo-type system improvements can be anticipated as a result

of technolog:.- improvements, as well as several "near-at-hand" breakthroughs that will

offer opport.umities for significant operational technique and hardware performance

capability i-provements. The major area of anticipated new technology developments

affecting Mzk II operational flight communications and tracking appears to be in the

area of laser concepts and applications, potential laser communications hardware

developmet., and satellite networks planned for communications applications that will

become oper-ational in time for Mark H use. Also, operational technique improvements

will enable v-en less dependence on remote ground stations by use of direct, real-time

contact with he MCC via communications network relay, e. g., synchronous equatorial

satellites i- line-of-sight of the space shuttle, each other, and the ground station at

all times tc. :liminate remote station data readout and readin functional requirements.

Except in the broad-base general sense, no attempt has been made to project or

extensively e-valuate the impact of these major changes to the existing Apollo-type

communica'.ms and tracking capabilities other than using more conventional technology

state-of-the-art advances in the hardware concept as a base of estimation for evolution

to the Mark - from Mark I design. Technological advances in this area may provide a
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tangible basis for considerable simplification, performance improvement, and quality

increases, with accompanying cost reductions beyond those presently anticipated.

For purposes of this study, a more conservative approach has been taken in projection

of the Mark I to Mark II evolution on the basis of present technological experience.

Hence, the anticipated level of delta costs for communications system improvement has

been statistically calculated at approximately $5 million.

General improvements in current technology, performance, and quality can be more

optimistically viewed as achievable by the Mark II flight data as a result of industry-

wide advancements -- both under NASA/DoD contracts and as a result of concentrated

independent development. For example, considerable work has been performed by

LMSC alone over the past two years for demonstration (laboratory) of ultra-wideband

optical communications (UWOC) electronics for source modulation and receiver

detection and discrimination. High performance was demonstrated in the 1 to 2 GHz

bandwidths. Work performed in optical systems for UWOC has included development

of widebank modulators, and solid state devices for optical frequency up-conversion.

Practical communications and tracking systems (including navigation and navigation

aids) using laser technology, including work performed in conjunction with the Apollo

program, may considerably change the Mark II subsystem development approach in

this area as these fields reach maturity and are flight-qualified in other applications.

2.4. 1. 2. 1 Mark II Communications. The communications equipment for the Mark II

orbiter will remain essentially the same. The S-band equipment will be modified

to be compatible with S-3A BITE configurations, and all elements will be updated to

incorporate new technology where performance or reliability may be improved.

2.4. 1.3 Electrical Power (Mark II). The Mark II orbiter will use the basic Mark I

electrical power system functional components and electrical inter-relationship between

these components. The location of components and their physical description will

change with the following proposed component performance improvements. These are

described below.
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r ci- F f Mt;1II c; P, cPACPF COMPANY



LMSC-A995931
Vol II, Pt 4

o Fuel Cell. The fuel cell design life will be extended from 2000 to 5000 hours

through a development program that will add to the initial development program.

A 2000-hours demonstration program on the Mark II design will limit costs

to less than 50 percent of the Mark I design development cost.

o Cryogenic Storage System. Improvements are anticipated in insulation

efficiency and ancillary controls, but the Mark I tank selection and development

will not be repeated for Mark II.

o Static Inverters. Static AC inverters will be developed to provide the

desired module size and reduced weight.

o Transformer-Rectifiers and Generator Control Units. These Mark I aircraft

designs will be modified to cold plate cooling and vacuum operation to provide

freedom of space allocation in the Mark II orbiter.

o Power Switching. The application of solid-state switch/circuit breaker units

able to handle higher currents and provide increased circuit protection

capability will be increased.

o EPS/DMS Interface. The control of the power system will be modified to

incorporate increased computer control of on-board checkout, of power system

operation, sequencing, and both normal and emergency configuration control.

EPS equipments will be modified to interface with this increased computer

control capability.

2. 4. 1. 4 Mark II Control and Display Configuration. The basic S-3A data management

system and interface units are 'icluded in the recommended LMSC baseline. This

provides an initial Mark I control and display capability which, for the most part, is

compatible with and sufficiently flexible for the projected Mark II configuration.

Major capability improvement envisioned for Mark II is in the area of software and

the extension of certain "automated or programmed" functions, thus further offloading

workload from the crew. Representative software capability recommended for

growth from Mark I to Mark II include the following:
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o Increased software sequencing of control functions

o More automated vehicle configuration

o Increased onboard mission planning through computer operation

o Increased payload operations planning for complex missions

o Greater consumables management computer analysis

It is expected that the control and display devices currently planned for Mark I will

be sufficiently flexible to accommodate this increased software capability. The only

equipment growth anticipated for Mark II is the addition of area navigation (RNAV)

controls and displays. The prime operational applications of area navigation permit

reduction of flight distance between two points in a route structure; preorganized

arrival and departure flight paths in terminal areas, reducing pilot and controller

workload; and permit instrument approaches (within limitations) to airports and

runways not equipped with landing aids. Considering the number of flights per year,

normal ferry operations between deorbit landing sites and refurbishment centers,

and potential abort situations, area navigation is a capability very likely to be

incorporated in the Mark I orbiter.

The RNAV CRTs and the existing DGU can also perform ancillary functions such

as the following:

o Orbit map displays

o Complex rendezvous and docking maneuver plots

o Backup for the MDU subsystem display (CRT)

o Ancillary source for displaying computer calculations requested by the crewman

o Addition source for procedures display, abort, COFIRM, operations, payload, etc.

Figure 2.4-1 illustrates the general configuration of the control and display units (2) and

the electronic map display unit. Growth volume was provided in the Mark I main

instrument panel layout for the possible inclusion of these instruments. When the RNAV

is combined with the autopilot/autoland subsystem, considerable capability exists for

inclement weather operations for atmospheric flight.

2.4-7
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2.4. 1.5 Mark II Data Management and Onboard Checkout. The DMS grows in

capability through the various phases of Mark I to the operational Mark II, as shown

in Table 2.4-2. While the Mark I system is largely passive (except in the area of

electrical power control and onboard checkout), the operational Mark II system takes

an active part in all phases of effective mission accomplishment. Hardware and

software additions and modifications are required for the increased capabilities.

Hardware growth requires the necessary modification to SIUs to allow control as

well as monitoring of non-avionic subsystems. Manual overrides are retained on

flight-critical functions. Addition of control and monitoring capability will extend

automatic checkout to the interfaced subsystems with an attendant reduction in

ground support. It is anticipated that with the additional onboard capability with the

Mark II DMS configuration, ground-based mission support can eventually be reduced

to one central station at Cape Kennedy.

Table 2.4-2

DMS FUNCTION PHASING

Phase Mark I
- Mark 1I

Functio 
fIFT VFT OPNL

Instrumentation Control e o o o

Onboard CO/Fl -o o o o

Programmed Display Control o o o o

Maintenance Data Log a o o o

Electrical Power Control o o o o

Abort Warning Computation o o o o

Avionics Sequencing and Configuration 0 o o o

Guidance/Nay. Computation o o o

Mission Administration Log a o o

Overall CO/FI/iRM o o o

Automatic Configuration Control o o

Consumables Management o o

Rendezvous Computation o o

Payload Management o

Nonavionics Sequencing and Control o

A/C and S/C Flight Control o

Mission Planning o

o First Usage
o Subsequent Usage
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2.4.1.6 Mark II Instrumentation. The instrumentation subsystem of the Mark II orbiter

will follow the same philosophy as that of Mark I, being controlled by the DMS, with the

DFI being an overlay up through the first level of multiplexing. Because of the projected

greater integration of control avionics, it is estimated that the operational instrumentation

load will not increase.

2.4.2 Ground Support Equipment Mark II

The electrical ground support equipment utilized in the Mark I shuttle avionics system

interfaces in Mark II with a shuttle system that has (1) an increase in command capability

over each avionics subsystem and (2) a data management system that has extended its

control and checkout capabilities to all shuttle systems at each subsystem test to effect

the desired rapid two weeks turnaround schedule. Checkout and fault isolation of the

line replaceable units for maintenance and checkout will still be accomplished in the

avionics subsystem test laboratory with parallel, onboard, circuit troubleshooting as

required. The bench test equipment will be similar to that used on the Mark I program

with the significant changes centeri 3 around the modification/replacement required

of the test equipment to match the increased capability of the Mark II shuttle components.

Electrical ground support equipment for integrated systems checkout and launch will

undergo a relatively small change. The Launch Control Complex (LCC) equipment

will be quite similar to the previous Mark I progr am, with significant changes being

attributed to the software programns needed to accommodate the inclusion of the testing

and monitoring of the nonavionic shuttle systems. The major impact is expected to be

a reduction in manual control from the cockpit resulting from expanded automatic DMS

control capability which can be exercised by the LCC through the orbiter DMS.

2. 4- '1
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2.4.3 Mark II Software

Emphasis is placed on extending DMS and software functions to provide improved

capability of a level which may be readily justified as logical and reasonable growth.

As operational phases of the shuttle system approach realization, it is assumed that

plans will be laid for providing additional assistance to the crew in performing

what must eventually become routine operations. The .progressive introduction of

additional mission capabilities and payloads will inevitably increase crew training

and possible on-board mode/procedure proliferation to a point where extensive

computer-aided activity is a necessity.

For these reasons, Mark I vehicles should be progressively updated with respect to

DMS/software capability at planned intervals of 18 months. This span .of time

has been found to be an almost forced necessity in operational command and control

software applications of any s~ignificant scal.e (NAVY P-3, for example) because of

t-e ievitable refiienenLs that go with extensive test and usage. The capabilities

listed in Table 2. 4-3 for Mark II represent an initial, planned target for a. point in

time 36 months after FMOF. The content of the first, 18-month increment directed

toward this target is best left to subsequent detailed planning. A representative,

on-board software configuration showing major subprogram components is illustrated

in Table 2.4-2. Subprograms which have lesser versions available for EHFT (C1)

AND EVFT (C2) are so identified. As with progressive hardware development, and

perhaps more so with software, it is important at the onset that possible intermediate

and ultimate DMS capability objectives be understood. This is essential for proper

machine selection and early control program design.

At the stage of the shuttle program being addressed, the need for in-depth training

of multiple crews is an item of major concern. The flexibilities of the proposed

DMS with regard to simulation offers an especially good approach to this problem.

On-board crew training aids can be as nominal or substantial as one wishes to make

2.4-12
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Table 2.4-3
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them but, in the instance of a general-purpose, long-life space shuttle, it is assumed

that an ultimate objective of substantial on-board training capability is well justified.

This assumption is reflected in the software configuration of Table 2.4-2.

An item of on-board software shown in the hierarchy calls for MK II Development Test

Bed Driver Routines. Here it is suggested that FTV-2 and, to a lesser extent prior

to refurbishment, FTV-1 should be enabled as advanced development test beds for

in-flight evaluation/verification of planned additional capabilities, by experimentation,

on a basis of noninterference with primary mission objectives, and/or special

experimentation flights. In the case of new prototype hardware or software components

it may be desirable to test an item under real flight environments without actually

coupling into the current operating system. Special driver routines, operating under

a background level of the DMS Executive Scheduler, could provide simulated

coupling into the operating system and record the results for post-mission analysis.

Where man/machine factors are critical, one of the crew stations could be placed

off-line in a similar fashion to allow safe trails under actual operating conditions.

The expansion of System Test and Operational programs to include (1) nonavionic

subsystems management (including payloads) and mission operations support and

(2) automatic A/C and S/C flight path control significantly increases the total

sizing of the shuttle software system. The total number of 32-bit words of

loadable programs and data range from approximately 500K during early HFT to

790K for LVFT and early Mark II operations, then to approximately 1. IM at a

point 36 months after FMOF. Thought the software growth described is represented

as first employed on Mark I vehicles, it is directed toward Mark II operational

capability, and the increase in development costs associated therewith has been

so allocated.
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2.5 MARK I/MARK II AVIONICS PHASING

A number of basic avionics changes will be scheduled during the Mark I orbit, and will

include the following:

o Addition of spacecraft-type equipment for vertical flight, to augment that

aircraft-type equipment initially installed in the test vehicle for horizontal

flights

o Addition of mission-critical equipment, such as the GN&C Star Tracker and

Horizon Sensors, for transition from test flights to operational flights

o Addition of one or more levels of redundancy

o Refurbishment of the horizontal test vehicle to the operational configuration.

These changes and additions to the avionics system can be incorporated as the need

arises. However, the recommended approach is to provide installation well in advance

of actual need in order to prove capability and compatibility. Cost penalties to the

program should be insignificant, since no additional flights .would be necessary; only

the timing of equipment installation would be affected. Additional hardware and instal-

lation costs should not accrue, i. e., the same hardware would be required for the next

phase anyway; only the schedule of installation is changed. Software costs are also

not significantly affected by earlier hardware installation; again only timing of software

changes is affected. However, the approach would not be capable of completely proving

out equipment since actual flight operational environments would not be encountered in

the test flight phases. For example, if equipment required for vertical flights are first

tested during horizontal flights, the equipment will not be exposed to either the space or

high reentry Mach number environments. If determined to be significant, this short-

coming can be minimized by implementation of a phased test program that increases the

velocity and altitude in increnJts until a Mach number of 10 or 12 and an altitude of

some 200, 000 feet are reached. However, additional test flights would be required.

The cost of these additional flights have not been investigated for this study.

As indicated in the par. 2.4, changes proposed in the transition from Mark I to the

Mark II avionics configuration are essentially evolutionary in nature. With few excep-

tions, basic concepts and functions remain unchaged (Primary changes occur in the

2,5-1
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PERFORMANCE

o INCREASED G&N ACCURACIES TO REDUCE ACPS AND V PROPELLANT USE
AND REDUCE REENTRY DISPERSIONS

HARDWARE SAFETY AND R IABILITY

o IMPROVED QUALITY OF EQUIPMENT TO INCREASE PROBABILITY OF MISSION
SUCCESS AND ENHANCE SAFETY

o MORE AUTONOMOUS (;&N AND FAULT ISOLATION AND REDUNDANCY
MANAGEMENT TO REDUCE CREW WORKLOAD AND DECREASE CORRECTIVE
ACTION TIME

SOFTrARE

o GREATER RELIANCE ON SOFTWARE IN FLIGHT CONTROLS AND CHECKOUT FAULT
ISOLATION AND REIIDUNDANCY MANAGEMENT (COFI RM
THIS REQUIRES ADVANCED MANAGEMENT TECHNIQUES

o PERFORMANCE OF IUNCTIONAL OPERATIONS THROUGH SOFTWARE (INSTEAD
OF HARDWARE) TO ; IGNIFICANTLY INCREASE MISSION FLEXIBILITY AND
DECREASE CHANGCI REACTION TIME
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Fig. 2.5-1 P.ojected Mark II Avionics Change Impact
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method of implementation, performance capability, quality of equipment and scope of

coverage of certain capabilities). The autoland./autopilot aircraft functions could be

incorporated into the digital GN&C computer. Equipment accuracies could be improved.

Other examples of proposed changes include improving the system's capability of with-

standing space environments, increasing equipment lifetime, and expanding the capa-

bility of checkout, fault isolation, and redundancy management within avionics and other

subsystems outside of avionics (e.g. , propulsion). The impact of some of these changes

is shown in Fig. 2. 5-1.

An overview of key Mark I/Mark II milestones, including the change points are shown

in Fig. 2. 5-2. As in the case of the Mark I program, a flight test using a Mark I

vehicle to demonstrate capability and compatibility of Mark II equipment is proposed for

accomplishment about one year before the first Mark II flight.

The impact of Mark II avionics changes on cost is shown in Fig. 2. 5-3. The accumu-

lated cost for the sum of the Mark I and Mark II programs is $527.1 million. If the

Mark II missions are conducted using Mark I avionics unchanged, the total program

cost would be $475. 6 million.

If the mission ground support effort can be reduced to one center at Cape Kennedy, and

equipment is deleted that is no longer required due to use of navigational satellites,

avionics costs can be reduced as much as $66.4 million for an actual reduction in cost

of some $16 million in going from Mark I to Mark II. A breakdown of the cost increase

and decrease is shown in Table 2.5-1. However, to achieve the cost savings it is

necessary to increase the on-board checkout, fault isolation, and redundancy manage-

ment capabilities, i. e., the $58. 9 million cost savings is directly tied to the $32

million COFIRM expenditure.
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Fig. 2. 5-3 Mark II Orbiter Avionics Cost Delta

Table 2. 5-1

MARK II AVIONICS COST DELTA BREAKDOWN

Cost Increase Delta Cost*

GN&C
Improve performance and quality of equipment + $ 3.5M

Control and Display
Add area navigation/autoland CRT display + 2.OM

Communications and Tracking
Improve performance and quality of equipment + 5. OM

Instrumentation
Improve performance and quality of equipment + 4.OM

Electrical Power
5000-hr life fuel cell. Improve performance and quality of

equipment + 4.OM

Data Management and Cofirm**
Increase on-board support, scope, and coverage of cofirm (both
avionics and nonavionics) -+ 32. OM

Total Increase + $50.5M

Cost Decrease

Delete horizon sensor, star tracker and orbit alternate

(navigate with tracking satellite) -$1.5M x 5 = $-7.5M

Reduce MCC and remote ground station -58. 9M

Total Decrease -$66.4M

*Difference between using Mark II and using Mark I unchaged
**Cofirm - checkout, fault isolation and redundancy management
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2.6 BOOSTER AVIONICS

The booster avionics is defined in Fig. 2.6-1, and in the following text.

2.6.1 Flight Controls (FC)

The FC functions are primarily controlled by the orbiter avionics GN&C subsystem

and consist of the following:

o Interlocks package

o Barometric altimeter

o Engine and propellant control unit

o LITVC drive electronics

o LITVC valves

INTERIM RECOVERABLE PRESSURE FED LOX/PROPANE BOOSTER

-" PYRO SEPARATION

ECOVERYINTERLOCKS SEPARATION ROCKET EBW (4 EA)

BEACON_ PACKAGE PROPELLANT DISPERSION EBW

COMMAND 
PARACHUTE SYSTEM (7 EA)

DESTRUCT BAROMETRIC Ho PRESSURANT (4 EA)

RECEIVER ALTIMETERJLOX/PROPANE DIST

LANDING ROCKETS (5 EA)

FROM ORBITER ENG AND PRO HEAT EXCHANGE

ENGINE CONTROL CONTROL NASA ENGINES (7 EA)

I I- - ------ - ---- I
rIENVIR AND HAZARDOUS

ORBITER TVC N D R ZDEOUS
CT PURGE GAS DET

HARDLINE TO ELECTRONICS VES CONTROL j

CAUTION AND ORBITER - -- -

r---Q- ---- --------------------
PYRO PRIMARY RECOVERY RECOVERY

RECORDER MULTIPLEXES I DIST PWR DIST LIGHTS BATTERY

REMOTE PYRO PRIMARY GND PWR
XDCR AND S/C CALIB BATTERY BATTERY XFER SW

L .. L..- _J L --------------

DOG11

Fig. 2.6-1 Booster Avionics Selected Point Design
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The interlocks package receives inputs from the orbiter GN&C subsystem, the

command destruct receiver, and the barometric altimeter. It contains an event

sequencer which exercises control during and after separation.

The engine and propellant control unit is self-contained, receiving commands from

the orbiter GN&C system. Operation is monitored at the GSE and aboard the orbiter

through the instrumentation system.

The liquid injection thrust vector control (LITVC) system controls the booster attitude

during engine burn. The steering control signals are generated in the orbiter GN&C

thrust vector control (TVC) electronics. The orbiter TVC electronics gets its attitude

error signals from the orbiter Interial Measurement Unit (IMU) through the GN&C

digital computer and the rate and normal and lateral load alleviation acceleration signals

from the orbiter rate gyros and accelerometers. These signals are all processed in

the orbiter TVC electronics, then sent to the booster electronics as combined attitude

error plus rate plus acceleration (K1 e + K2 0 + K3A + K4AN) signals to control

the booster engine gimballing. Cross-coupling computations for pitch/roll and yaw/

roll are performed in the booster TVC electronics, and servo amplifiers drive the

liquid injection thrust control valves.

Maximum longitudinal acceleration due to "pogo" effects or due to excessive thrust

are controlled through the orbiter GN&C IMU accelerometer and digital computer.

Engine "on" and "off" discretes for acceleration control and at achievement of staging

velocity are sent from the GN&C computer to the booster engine controller.

Manual overrides of both thrust vector control and engine "off" operations are provided

at the orbiter pilot and copilot stations.

The normal inflight cutoff sequence is center engine first, followed by the outboard

engines.

In an emergency, the engine will be cut off by any of the following methods: ground

support equipment (GSE) command cutoff, prior to umbilical disconnect; range safety

command cutoff; "thrust not OK" cutoff; emergency detection system; and outboard

cutoff system.
2.6-2
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2.6.2 Communications and Tracking

Booster communications consist of a VHF recovery beacon transmitter and a command

destruct receiver. The instrumentation telemetry data are transmitted from the

orbiter vehicle.

2.6.3 Electrical Power

The booster electrical power subsystem consists of:

o Primary batteries

o Pyro batteries

o Recovery beacon and lights batteries

o Electrical and pyro power distribution

o Recovery lights

Control is exercised by the orbiter before separation and the interlocks package after

separation. Control and display functions are performed aboard the orbiter.

2.6.4 Data Management

Booster data management is limited in Mark I to those functions monitored through the

booster SIU. Since the booster mission is of short-duration, it is assumed that no

DMS system, as such, will be carried onboard the booster itself. In Mark II, growth

would again be in the areas of pre-separation propulsion and flight control.

2.6. 5 Instrumentation

The instrumentation subsystenYi' onitors functional operations of booster systems

and provides signals for vehicle tracking during burn and return. Prior to liftoff,

measurements are telemetered by coaxial cable to ground support equipment. During

flight, data are transmitted to ground stations over orbiter RF links.

2.6-3
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The subsystem consists of:

o Data acquisition and conditioning units

o Multiplexer units

o Remote calibration equipment

o Flight data recorders

The booster has been assumed to be as complex as the Saturn SIC vehicle, requiring a

comparable amount of instrumentation. The test vehicle requires 900 data measurements

and the operational vehicle requires 300 data measurements. All of these signals are

required for orbiter controlled operation and for telemetry to ground GSE.

2.6.6 Booster/Orbiter Equipment Redundancy and Commonality

The booster equipment is selected from the baseline 040A orbiter vehicles equipment

list as much as possible. However, the limited study conducted in this area shows

little commonality between booster and orbiter equipment. Table 2.6-1 lists the

equipment and quantities required, weight commonality with orbiter equipment, and

prior program application.

Equipment is defined for minimum safe conditions. LITVC injection valves are

assumed to be four valves per engine in the configuration shown. In the case of one

engine out, the assumption is that the basic NASA design allows for one engine

failure with one other shut down for stability control. In the case of one LITVC valve

stuck open, the same assumption holds in that another valve could be used to exert a

counter force.

2.6-4
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Table 2. 6-1

BOOSTER AVIONICS WEIGHT SUMMARY

Total
Quantlitv \Weight Orbiter Program

Subsystem Equipment Min Safe .(Safe) Common Application

Communication

Data. Hardline to Orbiter 1 2 10 X New

VHF Recovery Beacon 1 1 13 X Apollo

CMD Destruct Receiver 1 2 30 X Saturn

VHF Recovery Ant 1 1 1 X Apollo

CMD Destruct Ant 1 1 1 X Saturn

Subtotal 55

Flight Controls

TVC Electronics 7 7 70 X Agena

Fluid Injection Valves 28 196 No

Barometric Altimeter 1 3 30 No

Interlocks Package 1 3 45 No New

Eng and Prop Control 1. 3 45 No New

Subtotal 386

Electrical Power

Primary Batteries 3 5 300 X Eagle

Recovery Beacon Battery 1 2 20 X Apollo

Pyro Battery 1 1 15 No Apollo

Ground Power Transfer Switch 1 1 4 No New

Ground Power Receptacle 1 1 4 No Apollo

Main Power Distribution Unit 1 2 20 No New

Pyro Distribution Unit 1 1 5 No Apollo

Recovery Lights 1 4 8 No Apollo

Electrical Harness 1 2 300 No New

Subtotal 341

Instrumentation

Transducers 75 75 38 X C-5A

Signal Conditioners 200 200 40 X C-5A

Submultip) lexer s 5 5 25 X C-5A

Sequence Control 1 1 37 X C-5A

Remote Automatic Calibration Unit 5 5 40 No Apollo

Fli-ht Recorder 1 1 48 X C-5

Subtotal 308

AVIONICS TOTAL 1090
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2.7 COST AND RISK FACTORS

The major factors that determine avionics system costs can be associated with total

program cost, peak annual cost, or both. The major cost driver for total program

cost is the amount of onboard capability provided versus the amount of ground support

required to support mission planning, launch control, and mission operations. As

the use of ground support is decreased, the cost of supporting facilities and personnel

is decreased but the risk to mission success is increased unless equivalent capability

is provided onboard the vehicle. For the three system alternates considered in this

study a comparison was made of orbiter avionics costs, ground support costs for

launch control and mission operations (KSC, MCC, and MSFN), and total costs.

Table 2.7-1 summarizes this comparison and shows that the baseline system

(Alternate C) provides a net savings in total program cost, although its onboard

avionics cost is higher than for Alternates A or B. The risk associated with the

baseline system is defined by the longer time intervals between ground station contacts

for an orbiting vehicle.

Table 2.7-1

MARK I CONFIGURATION IMPACT ($M)

Alt.A Alt B Baseline

Maintenance and LCC 248.6 174.0 149.2

MCC 77.1 77.1 54.0

Remote Sites 5.4 3.5 3.5

Support Cost Totals 331.1 254.6 206.7

Vehicle Program Costs 250.3 289.2 325.2

Impact on Support Costs (A From A) 0 -76.5 -124.4

Vehicle Costs (A From A- 0 +38.9 +74.9

Net Savings

B and BL Over A 0 37.6 49.5

BL Over B 0 11.9

2.7-1
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Another major cost factor, generally, is the amount of existing/modified equipment

used versus the amount of improved state-of-the-art and new development equipment

incorporated. Since a common groundrule was applied to all three system alternates

(namely, that developed, proven equipment be used), this cost factor reduces to a

consideration of what types and what quantities of equipment were used for the three

system alternates. Also associated with the quantities is the redundancy level

associated with fail-safe or fail-operational/fail-safe. Costs are summarized in

Volume III of this document.

The cost of performing the first vertical flight unmanned was determined and may be

compared with either a reduced risk to the potential crew or to an increased risk to

the vehicle, since no man is onboard to make decisions and to manually override the

automatic onboard systems (see Par. 2.3). The cost delta for FVF unmanned was

determined but no significant difference in cost was identified among the three system

alternates.

The principal factor affecting peak annual funding for a designated set of onboard

avionics is the planned phase-in of equipment plus the time spans allotted for DDT&E.

Avionics peak annual funding can be reduced by supplying only that equipment needed

for each program phase rather than supplying an "all-up" system at the time of first

horizontal flight. The latter approach could entail more of a schedule risk than the

phased approach.
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2.8 CONCLUSIONS

1. A significant reduction in total program cost is achieved through extensive

use of developed, available equipment and software, and by use of the designated

baseline Mark IOrbiter Avionics System which reduces dependence of the crew

and vehicle subsystems on ground support for mission operations and launch.

Ground support cost reductions account for major savings to the program.

2. A significant reduction in peak annual funding is achieved by extensive use

of developed, available equipment and software and by phasing-in equipment

and functional capability as required to support program phases, i.e.,

horizontal flight test, vertical flight test, and operational phases.

3. Technological risk is reduced by use of existing aircraft equipment and

and spacecraft equipment specifically identified in the study. No significant

development of equipment is required for the Mark I Avionics System.

Environmental protection of most equipment is provided and those equipments

exposed to new operating environments will be flight qualified is required.

All safety-of-flight functions will be performed using dedicated hardwired

equipment configured fail-safe as a minimum.

4. The critical path to first horizontal flight xill not be impacted by avionics.

Only that equipment required for aircraft flight will be provided initially

and such equipment can be available for installation within thirty months

after authorization to proceed, allowing another eighteen months until first

horizontal flight.

5. Booster/Orbiter avionics commonality is minimal for the case of the interim

recoverable ballistic pressure-fed LOX/Propane booster.

6. The selected baselineMark I Orbiter Avionics System configuration provides

the basis for effecting a smooth transition from Mark I to Mark II avionics

and vehicle system capability.

7. Selective improvements in performance, equipment quality, and equipment

quantity to achieve the Mark II Orbiter Avionics System capability can be

made within the study guideline of forty to fifty percent permissible cost

growth. (nonrecurring) of Mark II over Mark I.

2.8-i
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2.9 RECOMMENDATIONS FOR FURTHER STUDY

The completed Alternate Space Shuttle Avionics study has produced a baseline system

concept which significantly reduces total program cost and peak annual funding, and

reduces technological risk. The principal study objectives have therefore been achieved.

However, the short time span allowed for the study precluded detailed study of some

aspects of the system.

Recommendations for further study that expand upon the presently defined baseline

system are presented below:

o A more detailed study of the application of S-3A avionics system techniques,

equipment, and software should be performed. Shuttle avionics equipment

interfaces with the data management subsystem, specifically the design of

subsystem interface units, should be defined in detail. Redesign and modifi-

cations of existing equipment for compatibility with S-3A checkout, fault

isolation, and inflight performance monitoring should be analyzed and costed.

The extent to which particular S-3A software programs are applicable to the

shuttle avionics should be examined; additional software development should

be defined and costed in detail. The extent to which existing Lockheed S-3A

development facilities (for hardware and software) can be applied to the

shuttle avionics development should be determined.

o The fly-by-wire primary flight control system and automatic flight control

system (both incorporating stability augmentation) failure modes should be

examined in great detail. Mechanizations incorporating separate electrical

power sources for each redundant system should be evaluated along with

mechanizations employing non-electrical backup mode capability.

o Additional reliability data should be compiled for baseline system equipment,
and safety/reliability studies should be performed to evaluate the adequacy

of selected equipment in the anticipated operating environment. Computerized

optimization studies for each subsystem should be conducted to trade off cost,

weight, volume, and component redundancy level according to weighting factors

or sensitivity coefficients agreed upon with the NASA.
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/
o All interfaces among avionics subsystems/equipments and between the

avionics system and non-avionics subsystems/equipments should be clearly

defined. Included are mechanical, electrical, functional, and performance

interfaces.

o A thorough packaging and installation study should be completed. Modularity

and access for maintenance should be investigated, and impact on the crew

station and impact on the environmental control system should be analyzed.

o The baseline avionics system sensitivity to specific performance requirements

and to program requirements/constraints should be determined.

o The orbiter/payload interface requirements should be identified for a. selected

representative group of payloads as agreed upon with the NASA.

o The baseline avionics system definition should be more extensively detailed

in all subsystem areas. In addition, redundarncy management, automatic con-

figuration control -cd sequencing, operating modes, and abort with intact

vehicle recovery should be examined at the system level.

o The avionics system management plan for design, development, tests, and

integration should be prepared. The plan should be keyed to overall program

milestones, should identify major avionics tasks, and should state how these

tasks will be performed and managed. The experience of Lockheed in aircraft

development, spacecraft development, systems management, and avionics

integration would be incorporated into the avionics system management plan.
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Section 3

COST ANALYSIS SUMMARY
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Section 3

COST SUMMARY

Costs were estimated for three Mark I orbiter avionics system configurations:

o Alternate A

o Alternate B

o Alternate C

On the first iteration, all three systems were costed for the Mark I program in terms

of orbiter avionics cost and ground-based mission support costs. While Alternate C

was found to have the highest on-board avionics cost, it was also found to have the

lowest overall cost when the effect of its reduced ground support was taken into account.

Alternate C was chosen as the baseline system. Costs for this system were then

estimated for Mark II and the initial iteration of this alternate was re-estimated for

Mark I. Mark I orbiter avionics costs for all three alternates are summarized in

Fig. 3-1.

The final estimates of the baseline system for Mark I are shown in Fig. 3-2, and for

Mark II in Fig. 3-3. These are $323. 3 million for Mark I and $202. 6 million for

Mark II, for a total program cost of $525. 9 million.

The annual costs for the baseline system are shown in Fig. 3-4.
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BASELINE
CO-TFIGURATIGN ALTERNATE A ALTERNATE B

wi CU RRING 231.2 176.7 210.3

RECURRING 12.8 8.8 8.9

OPERATIONS 81.3 64.8 68.8

TOTALS 325.3 250.3 287.9

Fig. 3-1 Mark I Orbiter Avionics System Costs Summary

SJ EMA UNITS GRD REFURB/ OPS

,,' £,L£AENT D&D GHT TEST FTH (2) DDT&E RETROFIT SPARES

pa/Ot i;C SYS INTEG 2.2 2.2 .7 5.8

oGUI e. CONTROL 11.8 1.5 4.6 3.8 20.3 2.8 16.1

d/.t /ANAGEMENT
& C/INAGERM 50.7 1.5 10.0 4.1 65.2 6.4 20.8

CIPIPOLS 13.7 1.5 1.4 1.6 16.8 0.4 5.3
CO,/OLSUt4ICA IONS

AVUNICAIOS 8.0 1.5 1.8 2.2 12.0 0.4 4.1

jij1 PUtM/.ENTATION
(DE'If" /,OPMENT &2.0 .9 29.6 3 13.1
OPLPArIONAL) 15.4 1.5" 2.0 11.9 29.6 2.3 13.1

rLECT POWER DISTRI-
UOII0N & CONTROL 2.9 1.5 0.6 0.5 4.1 1.4

50 Iw, ARE (VEHICLE) 65.8 65.8 10.0

GEL(CIC POWER 8.4 1.5 2.4 2.1 12.9 1.4 3.7

SS 228.9 14.4 80.3

Fig. 3-2 Mark I Orbiter Avionics Costs
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SUBSYSTEM UNITS GRD REFURB/ OPS

WBS ELEMENT D&D GHT TEST FTH (2) DDT&E TFU PROD (3) RETROFIT (2) SPARES

AVIONIC SYS INTEG 2.2 0 - 2.2 - - .4 2.8

GUIDANCE, NAVIGA- 4.6 1.5 1.3 - 6.0 3.5 10.5 1.0 18.3

TION AND CONTROL

DATA MANAGEMENT 8.2 - - - 0.4 3.9 11.7 1.8 30.6

AND CO/FI/RM

DISPLAYS AND 6.3 1.5 0.7 - 7.0 0.9 2.7 0.4 12.8

CONTROLS

COMMUNICATIONS 2.1 1.5 0.1 - 2.2 0.8 2.4 0.1 3.2

AND NAVAIDS

INSTRUMENTATION 5.5 1.5 1.4 7.0 3.6 10.5 3.7 4.5

(DEVELOPMENT AND
OPERATIONAL)

ELECT POWER DISTRI- 1.3 - - - 1.3 0.3 0.9 0.1 1.2

BUTION AND CONTROL

SOFTWARE (VEHICLE) 15.0 - - - 15.0 . 8.0

ELECTRIC POWER 4.3 1.5 1.9 6.2 2.0 6.0 1.2 3.5

GEN

TOTALS 55.3 45.0 17.4 84.9

D06308

Fig. 3-3 Mark II Orbiter Avionics. Costs

100

MARK I ORBITERPHASED $323.3 MILLION

90 - MARK II ORBITER PHASED $202.6 MILLION

TOTAL PHASED $525.9 MILLION
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Fig. 3-4 Mark I and Mark II Avionics Program Annual Costs
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Appendix A

REQUIREMENTS ANALYSIS

Attached is the compilation of working materials used for identifying subsystem

functional requirements, equipment needs, and minimum redundancy levels. The

lists are grouped into five categories:

1. Functions vs Mission Phase for Aircraft

2. Functions vs Mission Phase for Spacecraft

3. Displays and Controls Analysis

4. Aircraft Avionics Equipment Required for Crew Safety vs Mission Phase

5. Spacecraft Avionics Equipment Required for Crew Safety vs Mission Phase

The crew safety sheets were prepared individually for aircraft and spacecraft opera

tional periods. to reduce duplication of effort. No sheets were prepared for data

management, instrumentation, and displays (programmable), since these subsystems

have been established as noncritical to flight safety. The safety-of-flight displays

and controls are hard-wired and shared for spacecraft and aircraft functions.
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FUNCTIONS VS MISSION PHASE FOR AIRCRA FT

(Pages A-3 through A-7)
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NMISS I ON'PHASE

AIRCRAFT AVIONICS

VEHICLE ORBITER O

SUBSYSTEM PRIMARY FLIGHT CONTROLS O ,

FUNCTIONS .

diControl 3 1 1 1 BLANK - NOT REQUIRED

Attitu Control 1 1. CREW/VEHICLE SAFETY
Attitude Control 3 1 1 1 2. MISSION SUCCESS

Y Dapin 3 1 1 1 1 1 1 3. NONCRITICAL

Pitch Augmentation 3 3 3 3 1 . 3 1 3 3

Roll Augmentation 3 1 11 1 1

Speed Stability

o 1



MISSION PHASE

AIRCRAFT AVIONICS

VEHIC LE ORBI TER

SUBSYSTEM SECONDARY FLIGHT CONTROLS O

FUNCTIONS
Pitc Trim 2 2 2 3 3 2 2NOT REQUIRED

Roll Trim 3 3 3 3 3 3 3 1. CREW/VEHICLE SAFETY
2. MISSION SUCCESS
3. NONCRITICAL

Rudder Trim 3 3 3D 3 3

Air Braki 3 3

. ..... . -L Jen



MISSION PHASE

AIRCRAFT AVIONICS

VEHICLE ORBITER O

SUBSYSTEM AUTO PILOT 0O

FUNCTIONS ,4

Automatic Attitude Control 3 3 3 3
BLANK - NOT REQUIRED

Automatic Navigation 3 3 3 33 3 1. CREW/VEHICLE SAFETYAutoatic avigation2. MISSION SUCCESS
> 3. NONCRITICAL

v Automatic Landing 2 2 3

Unmanned/Non -Responsive Crew

Remote Attitude Control 1 i I i 1

Automatic Throttle Control 3 3 3 3

Unmanned/Non -Responsive Crew

Automatic Throttle Control i 1 11 1 i 1

___9

_ _ __ _ _ 1 l



MISSION-PHASE

AIRCRAFT AVIONICS

VEHICLE ORBITER O

SUBSYSTEM NAVIGATION O & -

FUNCTIONS ./

Comp-ute & Display Course 23 3 _O

3 3 3 3 2 1. CREW/VEHICLE SAFETY
Disply R ---ge -2. MISSION SUCCESS

Display Course Error 3 3 3 3 2 3. NONCRITICAL

Display Aircraft Hdg 1

Display ILS Beam Deviation Raw 2 2 I

Display Flight Director Cmads 3 3 3 3 3

_ -

_____ 
11I

- ii! !-

________.L±-j



MISSION PHASE

AIRCRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM COMNUNICATIONS

FUNCTIONS !

Ar Cy-- Voie- 2 2 22 23 32 22
BLANK -. NOT REQUIRED

2 i1 1 2 2 3 3 2 2 2 2 1. CREW/VEHICLE SAFETY
2. MISSION SUCCESS
3. NONCRITICAL
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FUNCTIONS VS MISSION PHASE FOR SPACECRAFT

(Pages A-9 through A-23)
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SPACECRAFT AVIONICS

VEHICLE ORBITER

SU BSY STEM GUIDANCE, NAVIGATION & CONTROLS O

Page 1 of 4 Pages ,, /'

FUNCTION

BLANK - NOT REQUIRED
Align Plafor-Gr d CREWVEHICLE SAFETY

Align Platf or 2 1 2. MISSION SUCCESS
Align Platform-Flight . i.3. NONCRITICAL

Local Vertical and Direction

3-Points -Stars

3-Points -Earth

Measure Linear Acceleration 1 1 2 2 2 1

Measure Attitude . 1 2 1 2 1 2 1 1

Measure Angular Body Rates 1 1 2 2 1 1

Integrate Acceleration Information 1 1 2 2 2 1 1 0

Integrate Velocity Information 1 1 2 12 2 1 1 -

Co oute Gravity Effects 1 1 I i 1
Inti P n 1 1 2 2 2 1 1

Co,,utc Cu,.r,-nt Inertial Positi on 111 1112 _2 I 2 1 ..



M , ON PHASE

SPACCRAFT AVIONICS

VEI-ICLE ORBITER

SUBSYSTEM GUIDANCE, NAVIGATION & CONTROLS

Page 2 of 4 Pages

FUNCTION C

Compute Current Inertial Velocity 1 1 2 2 2 1 1 BLANK - NOT REQUIRE

Update- Stae_ -- VtI 
1. CREW/VEHICLE SAFETY

Update State Vector 2 3 2 1 2. MISSION SUCCESS

3. NONCRITICAL

Compute Abort Targeting 1 1 1

Compute Orbit injection Targeting

Provide Orbiter Engine on Discrete 1

Provide Orbiter Engine Off Discrete 1

Provide OYS Engine on Discrete 2 2 2 1

Provide OMS Engine Off Discrete 1 1 1 1

Compute Rendezvous Targeting 
2 -I

Compute Docking Targeting 
2-



MISSION PHAI-ISE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM GUIDANCE, NAVIGATION & CONTROLS O

Paeg 3 of 4 Pages

FUNCTION

Compute Undocking Targeting 2 BLANK - NOT REQUIT
i. CREW/VEHICLE SAFETY

Compute Orbit Ephemeris Change 2 2. ISSION SUCCESS

Targeting 
3. NONCRITICAL

Compute Deorbit Targeting

Compute Reentry Targeting

Compute Supersonic Glide Targeting

Provide Inner Loop Comensation 1 1 2 2 2 1 1

Stabilize Body Bending Modes 1 1 1

Suppress Slosh Modes 1 1

Provide Load Alleviation 1 1

Limit Angular Rates 1 1 2 2 2 2 1

Limit Axial Acceleration 2 1i

Steer Ascent Trajectory 
2 2

---------------------------------------------



,.SSION P1ASE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM GUIDANCE, NAVIGATION & CONTROLS

Page 4 of 4 Pages

FUNCTION

Steer Orbital Maneuvers 2I BLANK - NOT REQUIRED

1. CREW/VEHICLE SAFET
Steer Orbital Attitude 2 2 1 2. TMISSION SUCCESS

3. NONCRITICAL
Steer Docking Maneuvers 2

Steer Reentry Profile 1

Provide Vehicle Trim (CG Tracking) 2 2 1

Provide Mode Selection 2 1 1 2 2 2 1 1

7-5--- 



MiSSiON PIIASE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM CONMMUNICATIONS

FUNCTION

Provide Two-way Voice Link (Hard-
Line) O BLANK - NOT REQUIRED

PrTLinke) OB/GND V - 1. CREW/VEHICLE SAFETY

PrBide To-way Voice Link () 2 2 2 2 2 2 2 2. VMISSION SUCCESSRB/GND ,3. NONCRITICAL

Provid e Two-way 
Data Link (Hard-

Line) ORB/GND 2

Provide Tvo-way Data Link (RF)
oPM/,Z1 1 2 2 2 1 1

Provide Two-Way Voice Link (Hard-

Line) ORB/STATION 3

Provide wo-w;ay Voice Link (RF)

ORB/STAT. 2 2

Provide Two-way Data Link (Hard-

Line) OREB/STAT. 2

Provide Two-way Data Link (RF)
ORB /STAT. 2

Frovide Two-way Data Link (Hard-
Line) 013/Payload 2 - 2

Provide wio-way Voice Link (Hard- I<
Line) ORE/Payload 3 3 _ 3

Provide To-way Data Link (Hard-

Line) ORB/1STR 2 -

.Provide Two -way Voice Link (Hard -

Line) RBE Crew 2 2 2 3 3 3 3 2



TISSiON PHASE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM ELECTRICAL POWER

Page 1 of5 Pages

FUNCTION

Fuel Cells BLANK - NOT REQUIED

Checkout and Start-Up 2 2 2 1. CREW/VEHICLE SAFETY

Heat Removal 2 1 1 1 i 1 1 1 2 2. MISSION SUCCESS

Heat Removal . NONCRITICAL

Water Removal 2 1 1 1 1i 1 1 1 2

Control Operation 2 1 1 1 1 1 1 1 2

Standby 1 2

Shutdown 2 12

Purge i I i I 1 2



MISSION PHASE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM a.ECTRICAL POWER

Page 2 of 5Pages 4
C)

FUNCTION /

Fuel Cell Reactant Supply 2 BLANK - NOT REQUIRED

Fill 02 Tanks (2) BLANK NOT REQUIRED
Fil 02 1. CREW/VEHICLE SAFETY

Fill H2 Tanks (2) 2 2 2. MISSION SUCCESS
-- 3. NONCRITICAL

Expel 02  
2 1 1 1 1 1 1 1 2

Expel H2  
2 1 1 1 1 1 1 2

Condition 02 2 1 1 1 1 1 1 1 2

Condition i 2  2 1 1 1 1 1 1 1 2

Checkout Storage Sys 2 2 -

_0 - -•



ZION PHASE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM ELECTRICAL POWER

Page 3 of 5 Pages 0

-0-

FUNCTION

Batteries BLANK - NOT REQUIRED

1. CREW/VEHICLE SAFETY
i2. MISSION SUCCESS

F. C. Emergency Start 2 1 2 3. NONCRITICAL
3. NONCRITICAL

> Ermergency Power for Avionics

Static Inverters

Invcrt DC Power to 3 Phase AC 2 1 1 1 1 1 1 1

,enerato's (AC)

Provide 3 Phase AC Power 2 1 1 1 2

Decouple from APU 2 2 2 2 2

Cenerator Control Units

Regulate Voltage 2 i i 1 2

Overload Protection 2 1 1 1 2

Overspped Protection 2 1 1 1 2

Unbalanced Phase Current Protection 2 1 1 1 2



MISSION PHASE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM ELECTRICAL POWER O

Page 4 of 5 Pages 
4

FUNCTION o

Unbalanced Phase Voltage1 Protection 2 1 1 2 BLANK - NOT REQUIRED
1. CREW/VEHICLE SAFETY

2. MISSION SUCCESS
aring Failure Drive Decouple 2 2 2 3. NONCRITICAL

Transformer Rectifiers

Convert AC Power to DC Power 2

Electric Power System Control

Circuit Breaker Control 2 1 1 1 1 i -1 2

Configuration Control 2 1 1 1 1 1 1 2

Component Control 2 1 1 1 1 1 1 2

DC Paower and Bus Control

F. C. Reverse Current Protection 2 1 1 1 1 1 1 1 2

Fuel Cell Bus Connection 2 1 1 1 1 1 1 1 2

T-R Unit Bus Connection 2 1 1 2

.s F:ult Protection 2 1 1 i 1 1 1 1 2



iISSN PHAIISE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM ELECTRICAL POWER

Page 5 of 5 Pages \

FUNCTION

AC Pow-er and Bus Control BLANK- NOT REQUIRED

1. CREW/VEHICLE SAFETY

Inverter Bus Connection 2 1 1 1 1 1 1 2 2. SSION SUCCESS.__._- ... 3. NONCRITICAL

Bus Fault Protection 2 1 1 . 1 1 1 1 2

Ground Power Interface

GRD DCL Power Connection 2 2

GRD AC Power Connection 2 2

AC Malfunction Protection 2 2

Distribution Units

'rouse Circuit Breakers

F ._ooning Equipment 
0

1 2

.- ---- .j I e. -i--

, .. ............ .......... ,._._. ,



MISS1IOWIASE
SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM DATA MANAGIMTNT

Page 1 of 4 Pages

FUNCTION

On-Board Checkout 2 3 3 3 3 3 3 3 2 BLANK - NOT REQUIRED

I. CREW/VEHICLE SAFETY,
Mode Control 3 2 2 2 2 2 2 2 3 2. MISSION SUCCESS

-- 3 2.2.2.2.2 . 3. NONCRITICAL

Data Bus Control 2 2 2 2 2 2 2 2 2 2 2

Display Control 2 2 2 2 2 2 2 2 2

Disposables Management 3 2 2 2 2 2 2 2 3

Comu.unications Control 3 2 2 2 2 2 2 2 2 3

Electrical Pover Control 2 2 2 2 2 2 2 2 2 2 2

Propilsion Control 3 2 2 2 3 2 2 3

Abort Warning 2 1 2 2 1 3 1 1 3

Ch.eckout tT-

Post Flight Safe

Stored Data 2 2 2 2 2 2 2 3

V;



MISSI(WPH \SE

SPA CECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM DATA NAGEMENT

Page 2 of 4 Pages

FUNCTION 0

Pre -Mi ntenance 3 BLANK - NOT REQUIRED
1. CREW/VEHICLE SAFETY

Stored Data Processing ? 3 2. MISSION SUCCESS
3. NONCRITICAL

Unscheduled Maintenance Definition 3

Work Plan Preparation

Repair/Maintenance Verification ' 3

Payload/Vehicle Integration 1 1 2 2 2 1 3

Post Maintenance Verification

Pre-.-ate Verification

Orbiter/Tank Verification 1

Orbi'ter. /LUT Verification 1

Integratt..d System Verification 2 I



MISSION PHASE
SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM DATA MANAGMENT

Page 3 of 4 Pages

FUNCTION

Orbital Config. Verificatio BLANK - NOT REQUIRED

1. CREW/VEHICLE SAFETY
Mission, Peculiar Verification 2 2 2 2. MISSION SUCCESS

3. NONCRITICAL
Pre -Reentry Verification 1

AEES Pre-Start Verification

Atmospheric Flight Verification

Final Approach Verification

Fault Isolation

Unscheduled Maintenance 1

Repair Maintenance 1

Payload Vehicle Integration

Post Maintenance I

Pre -Mate I -

Orbiter/Tank Mate 1-



MISSION. PHASE
SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM DATA MAI AGEMEN T

Page 14 of 4 Pages

FUNCTION

Orbiter/LUT Mate BLANK - NOT REQUIRED
S----- 1. CREW/VEHICLE SAFETY

Integrated System 1 2. MISSION SUCCESS
3. NONCRITICAL

Pre -Tankini 1 1
Pre -. iftoff 1

S/C Hardware In Flight i 1 i 1

A/C Hardware In Flight

Redund ancy Management

S/C Reconfiguration 1i 1 1 1 1 1 3

A/C Reconfiguration 3

S/C Status I 1 i i 1 1

A/C Status 1 i 1 3

,7. a,



MISSION PIIASE

SPACECRAFT AVIONICS

VEHICLE ORBITER

SUBSYSTEM INSTRUMENTATION

FUNCTION

Data Acauisition ;i 3 3 3 3 3 3 3 3 3 BLANK -NOT REQUIRED
" 1. CREW/VEHICLE SAFETY

Signal Conditioning 3 3 3 3 3 3 3 3 3 2. MISSION SUCCESS
3. NONCRITICAL

Routing 3 3 3 .3 3 3 3 3 3

Formatting 3 3 3 3 3 3 3 3 3

Analog Multiplexers 3 3 3 3 3 3 3 3 3

Digital Mux 3 3 3 3 3 3 3 .3 3

Time Code Generation 3 3 3. 3 3 3 3 3 3

Storage 3 3 '3 3 3 3 3 3 3

Flight Recorder 3 3 3 3 3 3 3 3 3

Data-Digital, Voice, Analog 3 3 3 3 3 3 3 3 3

Film Cameras 3 3 3 3 3 3 3 3 3

Redundant Crew Displays 3 3 3 3 3 3 3 3 3 _-1

C:.ibration 3 3 3 3 3 3
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DISPLAYS AND CONTROLS ANALYSIS

(Pages A-25 through A-35)

A -24
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AIRCRAFT AVIONICS EQUIPMENT REQUIRED FOR
CREW SAFETY VS MISSION PHASE

(Pages A -37 through A -43)

A-36



AVIONICS EQUIPMEN'"EQUIRED FOR CRE.W SAFETY

MISSION PHASE (FHF)

SUBSYSTEM

PRIMARY FLIGHT CONTROLS

Page 1 of 2 Pages

EQUIPMENT <

Rudder Servos ' X X X X X X X

Elevon Servos X X X X X X

SAS/FBW Servos X X X X X X X

Trim/Backup Servos X X X X X

Speed Brake Servos X X X

SPFCS Computers X X X X X X X

Roll Rate Gyros X X X X X x X

Yaw Rate Gyros X X X X X X

Pitch Rate Gyros X X X X X X

Lateral Accelerometers X X X X c

Nofrmal Accelerometers X X X X X X >

Engine Speed Controls X X X X X X .

Pilot Static Probes X X X I X X X



AVIONICS EQUIPMI R EQUIRED FOR CREW SAFETY

NItSSION PHASE (FIIF)

SUBSYSTEM

PRIMAkRY FLIGHT CONTROLS q

Page 2 of 2 Pages

0

/ I I

Rate of Turn Sensor X X X X X X

Anti Skid System X X

Touchdown Switch X

Wheel STeed Sensor X X

of Sensor X X X

__-



AVIONICS EQUIPMENT REQUIRED FIOR CREW SAFETY

MISSION PHASE (FIIF)
A/C

SUBSYSTEM

NAVIGATION

EQUIPMENT

Tacan Transceiver I X X X

Tacan Control Panel X X X

Tacan Audio Select Panel X X X

Tacan Antennae X X X

Directional Gyro X X X X

Compass Contr)oller X X X X

Compass Coupler , X X X X

Flux Valve X X X X

Magnetic Compensator X X X X

Verticl Gyro X X X X

_________>



AVIONICS EQUIIWNT REQUIRED FOI CREW SAFIW

MISSION PHASE (FIIF)

A/C /
SUBSYSTEM

COMMUNICATIONS

- ~ r

EQUIPMENT

UHF Transceiver X X X X X X X

UHF Antennae "H HUF Antennae ' X X X X X X X

UHF Antenna Selector X X X X X X X

UHF Control Panel X X X X X X X

Interphone Stations X x

ATC Transponder X X X

ATC Transponder Antennae X X X

ATC Transponder Control Panel X X X

CI



AVIONICS EQUIPMENT REQUIRED FOR CREW SAFETY

MISSION PHASE (FHF)

SUBSYSTEM

ELECTRICAL POWER UENERATION AND
DISTRIBUTI ON 

EQUIPMENT '

AC ...en.rators X X X X X X X X

Ceorato: Control Units X X X X X X X X

Transformer Rectifiers X X X x X X X X

Static Inverte s X X X X X X

L4a'jin DC Po-wer Dis-ribution Unit X X X X X X X

Inverte:- AC Distribution Unit X X X X X X

DC P.-e.: Distribution Units X X X X X X X X

AC ~enerator Distribution Unit X X X X X X X X.

Inverter AC Bus X X X X X X

AC Generator Bus X X X X X X X X

DC Bus X X X X X X X X

Panl Circuit Breakers X X X X X X X X

'm~,: Con rrildd Ci crxit .B:l X X X X . X X



AVIONICS EQUIP T,'F REQUIRED FOR CREW SAFIE' 0

IVSSION PTHASE (FIF)
A/C

SUBSYSTEM

DISPLAYS AND CONTROLS

Page 1 of 2 Pages

EQUIPMENT

AD X X X X X X

SI ' X X X X

Surface Position Indicator X X X X X X X

Airspeed Ind. X X X X X X X

Altimeter X X X X X X

Instantaneous Vertical Velocity X X X X X X

Engine Oil Tempe.rature X X X X X X X

Engine Oil Pressure . X X X X X X X

Engine Fuel Pressure X X X X X X

Engine N, Speed X X X X X X

:.i ,, 2 Sp<, ed X X X X X X
p. . . F : ' '.



AVIONICS EQUIIWENT REQUIRED FORI CREW SAF, '

MISSION PHASE (FHF)

SUBSYSTEM

DISPLAYS AND CONTROLS 41

Page 2 of 2 Pages

EQUIPMENT

PFCS Control Panel, X X X X X X

PFCS Surface Control Panel X

Side Stick Controller X X X X X X

Rudder Pedals X X X X X X X

----1
c~JJ
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SPACECRAFT AVIONICS EQUIPMENT REQUIRED FOR

CREW SAFETY VS MISSION PHASE

(Pages A-45 through A-48)

A -44



AVIONICS EQUIPMENT i{EIQUIRED FOR CREVW S,,\FETY

SUBSYSTEM MT!TSSTON PHASE (FVF-M)

SPACECRAFT GUIDANCE,
NAVIGATION AND CONTROL

EQULIPMENT O

(NC Digital Computer X X X X X X

Inertial Meas. Unit X X X X X

Orbit Altimeter X X X

yste nt. Units X X

- ,

...... 1 II iIi



AVIONICS EQ OMENT REQUIRED FOR CREW SAF TY

SUBSYSTEM IISSIN PHASE (FVF- M)

SPACECRAFT
CUIDANCE, NAVIGATION & CONTROLS

,, 7 0'

EQUIPMENT 0

Rate Gyros (3) X X X X X X

Accelerometers - Normal X X

Main Engine Cimbal Actuators X X

TrVC Electronics X X

RCS Electronics X X X X X

_ _ _ _ _
I .---- _ _ _ _ _ __ - - - - 4 - - - - -



W/C AVIONICS EQIWMENT 1{EQUIRED FOR CREW SAWTY

SUBSYSTEM MISSION PHASE (FVF-M)

COIUN ICATIONS

0'

EQUIPMENT

Antenna 4 X X X X

Antenna Switch X X X X

S Band Power Amplifier X X X X

Unified S -Band Equipment X X X X

Pre-Mod Processor X X X X

Up -D t- Link X X X X -

______________________________



AV1ION* QUIPMENT IEQUIRED FOR C1 XSAFETY

SUBSYSTEM MISSION PHASE (FVF-M)

ELECTRICAL POWER (GENERATION AND

DISTRIBUTION

41

EQUIPMENT 9 O

Fuel Cells X X XX X X X X X X X

Static Inverters X X X

Unit
Main DC Power Distribution X X X X X X X X X X X

Inverter AC Distribution Uits X X X X- X X X X X

DC Power Distribution Units X X X X X X X X X X X

AC Generators X X XX X X X

Generator Control Units X X X X N X X

AC Generator Distribution X X X X X X X X X X-- - -X--- - - -- '

Inverter AC Bus X X X X X X X X

AC Generator Bus X X X X X X X X X

DC Bas X X X X X X X X X X X

t Ci Ocuit .. .eake rs X X X X X X X X X

x___ x__ x

AC~~~~~~~ Ir.7L 1. 1ao ~ I I I -
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Appendix B

ALTERNATE A AVIONIC: AjPPROACH

The Alternate A approach provided for two sepa. r: and distinct avonics packages, one

for aircraft-type operations and one for spacecra. operations. Figure B-i shows three

groups of avionics for the vehicle: (1) orbiter s:szsecraft, (2) orbiter aircraft, and

(3) the pressure-fed, recoverable booster. The onboard booster avionics are assumed

to be minimal and independent of the shuttle cor~.Laration; the effect of booster inter-

face variation as compared to the total avionics Is negligible.

B. 1 EQUIPMENT

The detailed equipment block diagram for the Alternate is given in Fig. B-2. The high

level of duplication is particularly evident in the displays and controls and utility

TO/FROM PAYLOAD

MISSION
oPERATIONS .- . . . -
SUPPORT COMMUN GN&C NR OTHER INSTRUM

ORBITER SPACECRAFT DISPLAYS & MANUAL CONTROLS RECORD
RECORD

ORBITER AIRCRAFT DISPLAYS & MANUAL CONTROL EOR

COMMUN GN&C EL WR EL Pf OTH R INSTRUM DEV FCT
GEN EI N SMSTRUMj

SBOROSBITER

OMUN C OTHER INSTRUM DEV FLT

Fig. B-1 Alternate A Avionics Subsystem Diagram

B-1

LOCKHEED MISSILES 8c SPACE COMPANY
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functions, e. g., electrical power. (This latter class of subsystems would obviously

be combined in a final design; however, they have been kept isolated for the purposes

of this study.) The primary feature of this approach is that dedicated equipment is

provided for each functional usage. The instrumentation system, operated as a pas-

sive monitor, will provide supplementary fault flags to those equipments with built-in

test capability. Hence, the crew must perform the redundancy management functions

in response to these annunciators. The major consideration for this alternate is that

it requires the least development of flight hardware. Conversely, it requires maxi-

mum usage of ground support equipment for checkout and maintenance.

Characteristics for Alternate A are summarized as follows:

o Dedicated equipments for each functional usage

o Minimum fault isolation

o Redundancy management performed by crew

o Maximum need for GSE

o Re-design for incorporating improved equipments

.o Minimum development of flight hardware

B. 2. WEIGHT STATEMENT

The vehicle delta weight statement for this alternate is developed in Table B-1. The

equipment identified will replace units with common utilization in the baseline or will

increase quantities to provide a similar redundancy level. The total weight increment

is 718 lb or an increase of 7. 9 percent over the baseline weight. This does not appear

to be a significant driver.

B-2

LOCKHEED MISSILES & SPACE COMPANY
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Table B-1

ALTERNATIVE A DELTA WEIGHTS

Baseline Reference

Additions Deletions

Total Total

Subsystem Equip Quan Wt (lb) Equip Quan Wt (Ib) / Wt

Guidance, Digital Computer 1 126 Navig Data 2 110

Navigation, Rate Gyros 12 21 Repeater

and Control Converter
Accelerometers 8 8

A/C Nay Set 1 83

Signal Condr 2 160

Subtotal 398 110 -+288

Communications Pre-Mod Procr 1 11

USBE 1 38

S-Band Pwr Amp 1 32

Up-Data Link 1 22

Audio Cont Panel 2 154

Subtotal 257 +257

Electrical Emer Battery 2 124

Power AC Gen 3 120

Gen Ctrl Unit 3 24

Static Inverter 4 160

Transformer Rect 3 54

Subtotal 482 +482

Displays and
Controls

Subtotal All 878 All 717 +161

Data Mgmt
Subtotal N/R -- All 665 -665

Instrumentation Flight Recorder 2 96

Maint Recorder 1 40

Time Code Gen 1 15

PCM Tim Equip 1 44

Subtotal 195 +195

Net Total +718

B-3
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Appendix C

ALTERNATE B AVIONICS APPROACH

Alternate B for the space shuttle orbiter avionics provides substantial improvement

over the Alternate A concept. This approach permits a single hardware element or

subsystem to satisfy the functional requirements in both the spacecraft (exoatmospheric)

and aircraft (endoatmospheric) flight regime. The second unique feature of this con-

cept is the inclusion of a passive (monitoring only) data management subsystem to

assist the crew in orbital operations and to reduce between-flight turnaround. Figure

C-1 is a block diagram of the Alternate B concept.

TO/FROM
PAYLOAD DATA BUS

TO/FR OM GNC OTHER I

OOSTERSTATUS

Fig. C-1 Orbiter Avionics Study - Alternate B

C-1
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C. 1 EQUIPMENT

C. 1. 1 Guidance, Navigation, and Control

The equipment employed in Alternate B is identical to Alternate A (except that the

rate gyros and accelerometers for atmospheric flight are deleted). Only the system

utilization and interconnections differ. Alternate B takes advantage of the option

which permits dual usage (aircraft/spacecraft) of a single hardware element by pro-

viding an automatic G&N crew backup mode during atmospheric flight from the Inertial

Measurement Unit (IMU) and associated sensors through the autopilot. In Alternate A

this interconnect was provided by the crew using display indicators.

C. 1. 2 Electrical Power Subsystem (EPS)

The EPS is identical in Alternate B, and in the selected baseline (Alternate C), only

the interfaces to the data management subsystem change.

C. 1. 3 Communication Subsystem

The conmmunications hardware is identical in Alternates B and the Baseline; only the

interfaces to the data management subsystem change.

C. 1i. 4 Instrumentation Subsystem

The Alternate B instrumentation (Fig. C-2) is essentially identical to Alternate A

except for deletion of common airplane equipments. Dedicated hard-wired annunicators

and displays are used for all safety of flight information. A multiplex data-gathering

subsystem composed of C-5A MADAR analog multiplexers for mission-critical

(operational.) data, with added units to provide DFI data as an integrated add-on, is

used to collect all data except for those non-avionic hardline interfaces required for

ground checkout and fault isolation, including fueling operations.

C-2
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TO TLM ~ DATA MANAGEMENT SUBSYSTEM
TO GND C/O- 

FLIGHT
CRITICAL
ANNUNICATORS SIGNAL ACQUISITION REMOTES

SIGNAL CONDITIONING

OND CO/FI E
HARDLINE S

SPACECRAF/AIRCRAFT SUOSYSTEMS

Fig. C-2 instrumentation - Alternate Orbiter B

A total of 2700 instrumentation points are required for operational and DFI data.

Three SAR complexes are used to meet the data acquisition requirements (3840 point

capacity) into the DMS. Formatted data from the DMS is input to the communications

subsystem for TLM transmission or via hardline interface to the GSE for checkout

in all between-flight phases. One-third of the SARs are for DFI and are removed after

the development phase is complete, leaving a 1960 point operational instrumentation

subsystem, exclusive of SOF and non-avionic hard-wired data points.

C. 1. 5 Data Management Subsystem

Data management for both airplane and spacecraft subsystems are provided by one

system of hardware (Fig. C-3).

Input data to the DMS is from the instrumentation subsystem. The Data Management

System (Alternate B) is configured for on-board checkout and is based around the

MADAR system as used on the C-5A aircraft. Briefly, the system, under control of

C-3
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ODRU DRU C/S MDR
rTrrr u Ln WOB

TO TLM INTERFACE UNIT

TO GND
C/C

DCOMP DCOMP DCOMP

GND. CO/FI
HARDLINE

e r C~ -- MML - CM& - MMULX CMA - MMUX --

INSTRUMENTATION SUDYSTE,.

FLIGHT . SPACECRAFT/AIRCRAFT SLSYSTEMS I
CRITICAL L -J

ANNUNICATORS
& DISPLAYS

Fig. C-3 Data Management- Alternative B Orbiter

a general purpose digital computer (DCOMP), continuously scans system parameters

through its central multiplex adapter (CMA) and automatic remote signal acquisition

units (SAR-A). The BITE outputs are sensed and signal measurements are compared

to limits and exceptions are recorded on magnetic tape by a maintenance data recordec

(MDR) and/or on a printer (POU). In addition, a data acquisition system under manual

control of the manual multiplexer (MMUX) and manual signal acquisition units (SAR-,M)

can select parameters for display on an oscilloscope or digital voltmeter. Controls

and displays are contained in the MADAR manual display/control unit (C/D group).

The C/D group also contains a data retrieval unit (DRU) which optically projects on

a rear projection screen a selected (one of 10,000) individual frame, utilizing 16 mm

film as a source. Aside from the displayed information, each film frame includes

frame selection codes and data point selection codes to aid in presequenced trouble-

shooting data under manual control.

C-4
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The system is programmed to test all subsystems (without interrupting operation),

down to a line replaceable unit (LRU) level, in normal functioning modes. The manual

displays and controls allow an operator, under guidance of the projection display, to

isolate problems in subsystems to LRUs and to print and magnetically record this

information.

A new design interface unit is required to control the digital inputs from the MADAR

Digital Computers (DCOMP), wide-band analog from SAR-manual multiplex units

which provide line analog data to the oscilloscope/voltmeter for onboard-manual

troubleshooting, and for GSE/TLM interface control.

C. 1.6 Control Display (C/D) Summary Comparison

A correlation in the C/D requirements for all alternatives is provided in Table C-1.

C.2 WEIGHT STATEMENT

The Alternate B weight statement relative to the baseline is provided in Table C-2.

C-5
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Table C-1

PILOTAGE C&D PANEL AREA AND WEIGHT COMPARISON

AIRCRAFT SPACECRAFT SPACE SHUTTLE

4 3 2 2 2 3 3 3 3 2
CREW SIZE MEN MEN MEN MEN MEN MEN MEN MEN MEN MEN

ALT C ALT C
VEHICLE C-5A 1011 5-3A GEMINI LM CM ALT A ALT B (TEST) (OPS)

AREA - SQ PANELT 57 26.75 9.3 19.4 16 27.1 28. 1 23.9 21.8 13.5

TOTAL C AND D 790 313 400 260 290 344 878 810 705/988 717
WEIGHT - LS

PILOT/COPILOT STA SYS ENGR STA CRT'S SUMMARY

WEIGHT AREA WEIGHT AREA WEIGHT WEIGHT AREA
(LB) (SQ T) NOFT

ALTERNATE A 602 13.5 276 14.6 0 0 878 28.1

ALTERNATE 8 602 13.5 208 10.4 1 63 810 23.9

ALTERNATE CT 514/797 13.5 189 8.3 1 63 705/988 21.8
(HORZ/VERT TEST)

ALTERNATE CO 528 13.5 0 0 3 189 717 13.5
(OPERATIONS) __ _

Do571 () Table C-2

ALTERNATE B DELTA WEIGHTS

Baseline Reference

Additions Deletions

Total Total
Subsystem Equip Quan Wt (lb) Equip Quan Wt (lb) A Wt

Guidance, Digital Computer 1 126 Navig Data 2 110
Navigation, Repeater
Navigationl GNC Signal Condr 2 160 Repeater
and Control Converter

Subtotal 286 110 +176

Communications 0

Electrical Power 0

Displays
and Controls All -- 810 All -- 717 + 93

Data Mgmt MADAR 326 All -- 665 -339

(MADAi) [ your list]

DIstrumentation ' 1
Net Total

C-6
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APPENDIX D

DETAILED EQUIPMENT LIST
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GUID/NAV/CONTROL CH ARA CTER S1IC S

0 O - Z
EQUIPMENT ITEM O 0 - REMARKS

S -. <Z .

O- 0 -0Z
LU 'C :

C- I LU 0O 0 O

Digital Computer M S3A 1832 Univac 2 625 126 32K Memory
Inertial Meas. Unit C 747 Carousel Delco 4 400 53 Modify for space use or use

IV Carousel IV B (TIIIC System)

Star Tracker Skylab ATM Bendix 6 25 77
Horizon Sensor i M Agena 13-166 Barnes 12 25 25

Navig. Data Repeater/
Converter M S3A 059A Bendix 3.71 251 55

TVC Electronics M Agena >5 20W 30 Same circuits and packaging
ACS Electronics M AF-P467 >5 30W 50 techniques. New package

Main Eng. Gimbal design.
Actuator NASA Saturn . 50

Compass Coupler C L1011 2591201 Sperry 25 17.2
Compass Controller C 2594911 6 2.0

Flux Valves C 2575570 50 4.0

m[aegetic Compensator C 2591200 50 1.8
Directional Gyros C .2594401 2.5 29

Vertical Gyros C L1011 2593742 Sperry 2.5 29

C

H-i y

k



GDI/CT0C HA,,ACTERI ST ICS
GUID/AV/CONTROL V c

_ I Z ~D - Z

- - REMARKS

EQUIPMENT ITEM 0 0'
-$" :2

0u 0 - - .-

Rudder Servos M C5A 4"Y91577 ertea 20 95.2 20C Mod.
ElRudevon Servos M C5A 4Y91013 ertea 5 376 20 Mod.

levoCS Servos NASA STCL 697660 GELAC 4 50 New

Trim/Baclup Servos M C141 544268 Air 10 10
esearc

Speed Brake Servos C New New 10

Elevon EFCS Computer C .1011 67293 ollins 0.9 92.4 50% Mod.

Rudder PFCS Computer C LIO11 672293 ollins 1.7 4612 50% Mod

SCetr ir ataM S53A A/N-5 endix 58.6 1026 C.P., Bite, VAST/GSE9 x 19 x 6
Central Air Data 

1

Computer
ir Data Sensor Assy M YF-12 Rosemont

Pitch Rate Cvros C LlolI 672300 Collink 1.25 7.4 37.1

Roll Rate Gyros C LIOII 672300 Collin? 1.25 7.4 37.1

Yaw Rate Gyros C L1011 672300 Collin 1 25 7.4 37.1

Normal Accelerometer C L1011 672302 Collin 25 4.1 71.3

Lateral Accelerometer C L1011 672301 Collinj 25 4.5 85.2

Lon itudinal Accel C L1011 25

PitCh APFDS C L10i1 672314 Collin 2 55.4

Roll APFDS C LIO11 672315 Collin 2.2 55.8

Engine Speed Controls M AH56 C1033 NASH 1.25 60

Speed Control Computer C L1O11 672294 Collin 4 .8

Anti-Skid Control ) N0
Touchdown Switch) M New 3ew

Wheel Speed Sensor) "
ItkJ

C+



ELECTRICAL POWER U c!c L-I CHARACTEIKTIC
SYSTEM --7 Z -

S0 < . REMARKS

EQUIPMENT ITEM < <

UJLU 4z

tFue Cell (e i 8.9 298 8100 C.P., GSE, New

0ACryogenic Tank & C H MP AAP,33"Di Bendiy, 200 120 138 Heat, GSE

H2 Cogenic Tank & CTL M AAP AP,39 Bendi . 200 200 97 Heat, GSE

Ni Cd Battery (Emerg) M Agena Type XT Eagle 45 62 931 GSE 19 x 7 x 7

Picher

AC Generator C S3A 4QN 490 GSE, 5% Mod. 10 x 7 x 7

Static Inverter 30 M Apollo 28V5200Y Wagner 61 40 396 C.P., GSE 11 x 6 x 6

400 Hz 914F53-i Elect.

Transformer/Rectifier M P3C *- 110 18 250 F.A., VAST, 5% Mod.
Generator Control M S3A AVZ-86 Westinr-100 11.5 336 F.A., GSE, 5% Mod.

house

DC Bus 
290

AC Bus 
290

D.C. Distribution. Unit
A.C. Distribution Unit

-

- Includes Remote Power Controllers and Remote Controlled Circuit 
Breakers



I CHARACTERISTICS
CO NVUT ICATIONS AND - -

TRACKING Z -
o o F- Z
- - REMARKS

EQUIPMENT IFEM 0 2- :
< < U ' -UD « - '

u W - o

Audio Panel M S3A Instr. 790 77 300 C.P., or FA, VAST/GSE

System

S-Band Pwr Amplifier M S3A Apollo Collins. 9993 180 32 729 C.P.

Block II

Unified S-Band Equip, M S3A I Collins.9979 37 38 1260 C.P.

Pre-Mod Processor M S3A Collins .9997 12.5 11.3 300 C.P.

Up-Data Link M pollo Apollo Motor- .996 10 224 1080 C.P.
Block II ola

t S-Band Antenna Switch Apollo 3

\h S-Band Antenna Apolloe 
VAST/GS

UIE_ Transceiver C S3A 4K90008 Collins 2 3Q 32.5 1026 F.A., Bite VAST/GSE

UiF Antenna Selector C S3A Collins 1.4

UT-h Antenna C S3A Collins 2.3

ATC Transponder M C5A 621A-6 Collins 15

ATC Transponder Ant. M C5A 5-65-5366 Sensor 3
IlL

IT Recovery Beacon M pollo Apollo RCA 13
Block II

VHI Recovery Antenna M kpollo Apollo 1
Block II

C)
0t\-

________ _____________



COMETICATIONS AND C HA RACTERSTiC S
TRACEING - ---

I- z
EQUIPMENT ITEM O < . , REMARKS

U <ZC'- 0 U,- 0T

Tacan Transceiver M S3A 37
ILS Receiver C C5A ILS-70 Collins 1.4 10
Radar Altimeter M S3A APN-201 Hoffman 1.3 9.9 228 Bite, VAST/GSE 10 x 6 x 3.8
AILS Receiver M C-SCAN Scanning beam
Orbit Altimeter SKYLAB 125W 45
Precision Ranging Sys CIRIS 120W 25

S o t

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- J I I I'D

_C
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DATA MA-AGEMT- C -ARAC TERI ST iCS
uI

-0 O D

EQUIPMENT iTEM O - O u REMARKS
u < 0"

Gen. Purp, Dig.Computer M S3A 1832 Univac 2 1800 255 18144 C.P., or.F.A, Bite, VAST/GSE
Drum Storage Unit M S3A MU576/AYS IBM ECH) 1.2 390 70 2765 C.P., or F.A, Bite, VAST/GSE
Dig. Mag. Tape Unit M S3A RD 348/Asl Science 4.8 60 20 933 C.P., or F.A, Bite, VAST/GSE

G&N SIU M S3A TBD 750 80 864 C.P, or F.A. 50", Mod.
ECL's SIU M S3A TFD 200 15 346 C.P., 500 Mod.
Elect. Pwr SIU M S3 A  TPD 200 15 346 C.P.
Booster SIU M S3A TPD 500 30 864 C.P., Bite, VAST/GSE
GSE/LCC SIU M S3A TPD 30
Display Gen Unit M S3A AN/ASA 82 Loral .2 1200 80 C.P.

H\I

c+ LD

_ 0 D-



COTHROLS & DIS.PLAYS C SCS
U

Z DZ
_.O j 0 REMARKS

EQUIPMENT ITEM < R E R .S

AIN INSTRTYENT PAEL

Flight Attitude Indicato M C-3A OD-59/A Bendix 6.94 201.

Horizontal Situation M S-3A OD-59/A Bendix 8.0 202.

Aero Surface Indicator C L-1011 672445 Collin/ 2.25 80.
LS

AFCS Modes C L-1011 672299 1" 2.75 85.75

AFCS Waring C L-1011 672295.88 56.
C L-lOil 672297 1.88 56.0

In-str Warning C20.2 228.0

Autopilot/Land C L-0l 672309-1 8.2 112.

Meter-Airspeed/Mach/ M C-5A 2594466 Sperry 8.2 112.

Meter-Altitude/Vertical M C-5A 2594463

Speed
Altimeter Speed M S-3A AN/APN- offman 3.0 38.0

201

True Airspeed Indicator M S-3A AN/AYN-5 Bendix 1.5 43.7

Altitude Indicator M S-3A 1.5 43.7

Multi-Purpose Keyboard M S-3A AN/ASQ- Hartmar 22 072.5
147

Engine Gimbal Override NASA M_ N.A.R. 1.95 73.5

RCS Control Override C -- ff-Shelf LSC 2.75 128.0
Parts

St 1.20 64.0
coan Override C - 1.00 40.0

T1a-i jt-n,/i Override C --
_ _ _ _ _ 0



CONTROLS & DISPLAYS. C CHARACTERI ST CS

0 _i: - I "REMARKS
EQUIPMENT ITEM O REMRS-

L LU

Parts

instr Brightness Control C -- " " " 0.75 6.25Caution and Warning Test C -- 1.20 32.5

Panel J
Booster Status Panel C -- " " " 2.90 45.0)
Master Sys Caution and C -- " " " 2.97 48.6

Warning

SI Multi-Function CRT M S-3A 4N/ASA-82 Loral 63.0 5669.

0 (Flight Mgnt)
Flight Mode Indicator C -- ff-Shelf LMSC 2.80 144.0

Part§

Multi-Function CRT M S-3A \N/ASA-82 Loral 63.0 5669.

(Subsystems)
Engine/Propulsion C -- 105030 - Astron- 8.5, 120.

Displays atitics 6.2,
1.2

Engine/Propulsion C -- 105028 " 6.2 112.

Displays
Mode Select (Main/OMS/ C f-- f-Shelf LMSC 1.1 25.

ABES) Parts

Mode Select (RCS/APU) C " " " 1 25.

Area Nav-Growth C L-1011 144000, Astron- 63)** 1147. o)
142000 autics o

Throttle Quads, Speed M C-5A C1033, Nash, 38 5230.

Brake, and Rudder Trim Et.Al Et Al o
Control + o

** Not Included



CCTTROLS & DISPLAYS C.A.. . ACTERISTICS

z aZ
_- 0 0 o z. -

EQUIPMENT ITEM O ; 2< u _ - REMARKS
U . < Z <0

C_ -- . -
0i

ABES Controls M C-5A -- -- 1.1 16.0
GC,&, Panel C -- Off-Shelf LMSC 2.6 64.0

Parts
Landing Gear Controls AT C-5A -- -- 4.2 128.0
Emer Landing Gear 'M C-5A -- -- 1.5 76.0
Extension Controls
ATC Panel M C-5A Arinc

Collins 2;0 48.0
572

Communications Panel M S-3A LS-601/ Instr. 14 3456
AI System '

EC/LS Panel C -- Off-Shelf LYMC 3.9 64,o
Parts

Engine Start M C-5A -- -- 2.9 64.0
Attitude Hand Controller NASA CM -- N.A.R. 8 32.5
Translation Controller C -- -- -- 8.2 34.1
C & W Annunicators C -- OFF-Shelf LMSC 5.6 576

Parts

0

'0

___ ___ ___ ___ ___ ___ _ I ~ . ___ __ __ ___ ___ ___ ___ ___ ___ ___ ___ c' 0 ,



COTROLS & DISPLAYS CHAIRACTERI STICS

- O O.

EQUIPMENT ITEM 0O D < REMARKS

O U __ Z .

L- n U O
u- 0 O

EYEBROW/OVER HEAD PANTEL

Engine Fire Control C L-lOll1 -- CAL-LAC 8.0 380.0

EC/LS Gas Supply Overrid C -- Off-Shelf LSC 22.3 1710.

Valves Parts

Elect. Pwr Generation C 6.9 110.

and Dist
Elevon Disable C Off-Shelf LMSC 2.5 4O.

Parts

Rudder Disable C Off-Shelf LMSC 2.8 1o0,

Parts

SAS, Pitch, ATS, and C L-lO0ll -- CAL-LAC 3.9 54,

Trim Emer. Controls
Antiskid Controls C L-1011 -- CAL-LAC 2.3 27,

Sensor Heat Controls C L-101 -- CAL-LAC 1.9 20.

PFCS Mon., Rudder & C L-1011 -- CAL-LAC 3.2 54,

Elevon Emer. Controls

Rudder Limiter C L-1011 CAL-LAC 2.1 45.

Engine Start C L-1011 -- CAL-LAC 2.4 5.

APJ Engine Controls C Off-Shelf LMSC 4.7 216.1

Parts

Cabin Lights C L-1011 -- CAL-LAC 2.0 15.

Mission Timer NASA 'M or LM -- N.A.R 2.5 22.

Event Timer NASA M or IM -- N.A.R 1.9 18.

Exterior Lights C L-1011 -- CAL-LAC 2.8 5.

ct

_______ ____. _ _ _ 4



IN ST RU7,TAT ION CHARPACTERISTICS

z . -7
,.-O O p ,

EQ UIPMENT ITEM O © u , . REMARKS

Transducers * M

Signal Conditioners M

FM Wideband Recorder ' M P3VL101 417 LEC 4 200 39 2660 F.A., Bite, MADAR/AIDS
Flight Data Recorder M C5A CDPIR 48
Time Code Generator C A/C 8521 Systrol 5 28 15 F.A,, Bite

Donner
Film Camera M A/C D 7
P.C.M. Telemeter Equip M Apollo 'Apollo Collin" .997 24 44 1274 F.A.

Block II,

*See following pages,

o
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CHARACTERISTICS
INSTRUMENTATION -,J

.

U (T >- O - REQD. SUPPORT
EQUIPMENT ITEM 0 L u EQUIPMENT

0 Z _ U

]-- < o

TEEI PERATURE
0 to +200Deg. F F Thermo- 1A59741 Dougla. 5 1.2 5 4 1,000

Sto 16couple 1A66215 4 1.2 5 4 1,000 DC Ampl LA82395
0 to +160 Bridge IA82274

-400 to +500 1A67862 2 4.7 5 4 1,000
-400 to +900 1A67863 2 4. 6 5 1,500

- 60 to +320 1B34472 2 1.2 5 4 1,000

-400 to +100 1334473 1 4.7 5 4 1,000
S-400 to -200 1B37878 2 4.7 5 4 1,000

0 to 2000 1364968 1 4.7 6 5 1,500

-400 to +200 NA527315 N A 1 4. 5 4 1,000 Bridge v7750463

0 to +1800 NA527323 2 4. 5 4 1,000

-400 to +100 NA527441 1 4.7 5 4 1,000

-100 to +2000 60B67223 Boeing 1 1.2 6 5 1,500 DC Ampl 60B3113
Zone Box 60B67608

-100 to +500 60B6724 1 4.7 6 5 1,500
-100 to +3200 60367536 5 4.7 6 5 1,500
-200 to +700 60B67609 3 4. 6 5 1,500
-200 to +200 60BO768 3 4.7 6 5 1,500
-300 to +200 60BT114 1 4.7 6 5 1,500
-200 to +3200 60B72067 2 4.7 5 4 1,000
-300 to +500 60B7209c 2 4.7 5 4 1,000
-00 to +100 __

0 to +4000 D 0

0 to 400 PSIA F Strain 1B31356 Dougla 2 4.7 10 3 .D
1500 to 4500 Cage

XF - Flight Proven
Mi - Modification Required
D - Development Required



1TNSTRTIUENTATION CHARACTERISTICS

tn cl Q]
DD

SO - REQD. SUPPORT
EQUIPMENT ITEM . : UEQ UP T

SI o EQUIPMENT
UJLUU

>: :2 z , (
- U Z  O

PRESSURE (Continued)

0 to +400 PSIA F Strain 1B31413 Dougla 3 4.75 10 3 1,000
Gage

0 to +3500 1340242 3 4.75 10 3 1,000

0 to +50 1B43320 3 2 5 2 500

0 to +2000 NA527412 N A 2 4 10 3 1,000

0 to +2500 60B72075 Boeing 1 4.75 10 3 1,000 DC Ampl 60B73112

S 0 to +3000 60B72080 2 4.75 10 3 1,000

0 to +500 60B72091 2 4.75 10 3 1,000

0 to +3500 60B72178 2 4.75 10 3 1,000

0 to +45 60B72199 1 2 10 3 1,000

0 to +2000 60B72200 V 2 4.7 10 3 1,000

0 to +10. S063252-0I osedon 4 2 8 2 1,000

0 to +15 063252-15 4 2 .8 2 1,000

0 to +0.5 Pizo- PS2-12162 5 1 1o 3 700
electric

0 to +700 Strain 703682 Boeing 2 4.75 10 3
Gage

0 to +2 PSIG Pizo- HFO(6) Bytrex 5 2 3 3 500 CD5-626
electric

-6000 to +600 PSID Strain 1A72914 DouglaE 1 4.75  10 5 1,000 --
Gage

-25 to +25 60B72077 Boeing 1 2 10 5 1,000 DC Ampl 60B73112 0

FORCE
0 to +50K LB M Strain WCR-36 W. C. 2 3 5 8 500 AFDS 2



I uST RUMvENTATI ON CHARACTERISTICS

_D

EQUIPMENT ITEM < REQD. SUPPORT
u z o< EQUIPMENT

D _ u

S z  0 o
- < >, < : >

VIBRATI ON

-70 to 70 G F Magnetic IA68707 Douglas 2 8 8 4 1,000 Instl. 1B58286
Pick up

-5 to 7 : 60B72192 Boeing 4 5 8 4 1,000

RATES

-25 to 25 Deg/S F 5DZ12400 SIU 2 4.75 15 8 1,500 DC Ampl 50Z12400

0 to 7K RPM Trh.Pulse 60B73156 Boeing 2 4.7 10 10 1,500 -

Scryerter

0 to 30 Tach. 5-0163 N A 1 4.7 15 10 1,500 s/C V7-750453
0 to 5K M Magnetic 4 10oestburg 2 0.1 8 9 1,000 S/C BAC 474

0 to 10K PPPS M Pick up ?ulse Rate Honey- 4 1. 3 1.5 800
uo D.C. well

onv.

DIFENSION

-7.5 to 7.5 Deg. F Pot LA66248 DouglaE 1 4.7 10 10 1:500 -
0 to 110 M RVDT 41590 GELAC 1 3. 10 10 1,000 S/C 41590-2
0 to 360 M Resolver L1184 LASQ 2 .1 16 8 1,500 S/C 41590-2

Syncro

0 to 100 o F Position NA527285 N A 1 4.7 10 8 1,000

Pot

0 to 100 Angular NA527306 2 4.7 10 8 1,000 -
0 to 100 NA527307 2 4.7 10 8 1,000

0 to 100 SX2633 ' 1 4.7 10 8 1,000

0 to 100 LA78153 Douglas 5 4.7 10 8 1, 000

0 to 100 Position 001612001 N A 1 4.7 10 8 1,000
Pot .



iNST RUMENTATI ON CHARACTERISTICS
CU

<EQUPMENT ITEM I REQD. SUPPORTEQNSIOPMEN T ITEM < u

O to 340 INCH F Extensic 1A68709 Douglat 3 4.7 32 20 1/500 s/c 139437

0 to 12 meter 275 4 4.7 24 20 1,500
0 to 6 !M Pot 17 ournes 2 1.5 10 7 1,00 s/C Aids 8

0 to 3 J LVDT 4159C GELAC 2 1. 4 4 1,000 S/C 41590-1

VDC FVBNT

0/5 VDC M mpar e 61618 merson 4 .2 1 . 1,00 -

0/5 icRT o 10 Q~ d 2 0.1 1,00 AIDS 3
Device

0/20 Compare CATS 2 bval 4 .2 1 . 1,00 -
Elec La0

0/28 , Ector 131C Hi-G 2 2.5 3 1,o0 AIDS 3
Inc

0/28 , F icro S/i 1B34424 ouglas 3 4.7 3 3 1, -

0/28 1 Differ- V7-75031C NA 1 4.7 3 3 1,00
eNliat or

VDC - ANALOG
0 to 7.5 VDC F Ampl 50Z1240C IBM 5 4.7 4 3 1,00
50 to 60
24 to 32 60373113 Boeing 3 4.7 3 23 1,00
0 to 300 M Compare 616181Emerson 5 4.7 3 3 1,00
0 to 5
3 to 5 CKT CATS 2C Naval 4 4.7 3 3 1, 00

Elec Lab

0.1 to 0.2 1 r CATS 3 5 1. 3 3 1000 D



I NTArI ION CHARACTERISTICS
cf

f > O 0 REQD. SUPPORT
EQUIPMENT ITEM 0 EQi PMENT

z >- U --

- 0 , 3> / - >

iDC A~NALOG (Continued)
0 to ±50 VDC CKT CDC 10 Naval 5 1. 3 3 $l,00

O to iElec : I

0 to 5 A68710 Douglas 2 1,00( Control Unit iA68710-5

VACo

120S VAC M CKT K104-01 Eon 2 0.1 16 80 1,00
VAInstru-

O to 4 Differen- - Honey- 4 0.1 1 1 1 i,00

tiator well

StoRRE 200 F ag LA59741 Douglas 5 1. 5 3 1,00

Picker

0 to 20 Det. 1A68316 5 1 5 .3 1,00

0 to 500 T ME4310019 NA 5 1. 5 3 1,00

0 o 00etwork 5012400 Boeing 5 1. 5 3 1,00

0 to 3 M T CS1 Electra 1 1 6 3 1
matic

O to 5 D a

FREQtNCY
R30 to 420 HZ F 50Z12399 IBM 1 0.1 5 3 1,00

0 to 4 ATT M CT AV-LD 4 1.0 1 .2 80



C ,IRACTE R STICS
INSTRU MRUi RTAT iu NI R-

S D N Z

-O - 0 . REQD. SUPPORT
EQUIPMENT ITEM EQ , UPMENT>< EQUIPMENT

RESISTANCE

OHMS C5T Electr
ratic

L to 300 LB/SEC F Mag 6-0163 N A 3 4.7 10 6 $1,50 /C V7750459ck upaib V7-750-467

6 to 60 LB/H M Thermal 6C hermal 2 1. 4 4 1,500 AIDS 2

Oto 0 >

'aticO

0. i t

_____ ~ p- -


